首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Kounadis  A. N. 《Nonlinear dynamics》1999,18(3):235-252
This work deals with dynamic buckling universal solutions of discrete nondissipative systems under step loading of infinite duration. Attention is focused on total potential energy functions associated with universal unfoldings of cuspoid type catastrophes with one active coordinate. The fold, dual cusp and tilted cusp catastrophes under statically applied loading occurring via limit points, asymmetric/symmetric bifurcations and nondegenerate hysteresis points are extended to the case of dynamic loading. Catastrophe manifolds of these types showing imperfection sensitivity under both types of loading are fully assessed. Important findings regarding dynamic buckling of imperfect systems generated by perfect systems associated with imperfect bifurcations are explored. The analysis is supplemented by a numerical application of a system exhibiting imperfect bifurcation when it is perfect as well as a hysteresis point associated with a tilted cusp catastrophe, when it becomes imperfect.  相似文献   

2.
The predictions for plastic buckling of shells are significantly affected by the plasticity model employed, in particular in the case of nonproportional loading. A series of experiments on plastic buckling of cylindrical aluminum alloy shells under biaxial loading (external pressure and axial tension), with well-defined loading and boundary conditions, was therefore carried out to provide experimental data for evaluation of the suitability of different, plasticity models. In the experiments, initial imperfections and their growth under load were measured and special attention was paid to buckling detection and load path control. The Southwell plot was applied with success to smooth the results. The results show that axial tension decreases resistance to buckling under external pressure in the plastic region due to softening of the material behavior. Comparison with numerical calculations usingJ 2 deformation and incremental theories indicate that both theories do not predict correctly plastic buckling under nonproportional loading.Babcock (SEM Member), deceased, was Professor of Aeronautics and Applied Mechanics, California Institute of Technology, Pasadena, CA 91125.  相似文献   

3.
A simple nonlinear buckling analysis is applied to a one-degree-of-freedom arch under impact loading in which viscous damping may also be included. Such a loading consists of a falling body striking centrally the joint mass of the arch in such a way that a completely plastic impact can be postulated. When there is no damping the exact dynamic buckling load for such a kind of loading-associated with an unbounded motion can be established by using a static criterion (approach). More specifically, it was shown that the dynamic buckling load corresponds to that unstable equilibrium state where the total potential energy of the system is zero. Furthermore, it was proved that the second variation of the total potential energy at the foregoing unstable equilibrium state is negative definite. This implies that the curve loading versus displacement resulting by the vanishing of the total potential energy has always a maximum on the afore mentioned unstable state. It was also found that the system may become sensitive to initial conditions. If damping is included the foregoing static criterion yields lower bound buckling estimates. These findings were verified by employing a highly efficient approximate technique as well as the numerical scheme of Runge-Kutta for solving any nonlinear initial-value problem.  相似文献   

4.
An analytical–numerical method involving a small number of generalized coordinates is presented for the analysis of the nonlinear vibration and dynamic stability behaviour of imperfect anisotropic cylindrical shells. Donnell-type governing equations are used and classical lamination theory is employed. The assumed deflection modes approximately satisfy simply supported boundary conditions. The axisymmetric mode satisfying a relevant coupling condition with the linear, asymmetric mode is included in the assumed deflection function. The shell is statically loaded by axial compression, radial pressure and torsion. A two-mode imperfection model, consisting of an axisymmetric and an asymmetric mode, is used. The static-state response is assumed to be affine to the given imperfection. In order to find approximate solutions for the dynamic-state equations, Hamiltons principle is applied to derive a set of modal amplitude equations. The dynamic response is obtained via numerical time-integration of the set of nonlinear ordinary differential equations. The nonlinear behaviour under axial parametric excitation and the dynamic buckling under axial step loading of specific imperfect isotropic and anisotropic shells are simulated using this approach. Characteristic results are discussed. The softening behaviour of shells under parametric excitation and the decrease of the buckling load under step loading, as compared with the static case, are illustrated.  相似文献   

5.
Several experiments were performed with a Kolsky Bar (Split Hopkinson Pressure Bar) device to investigate the dynamic axial buckling of cylindrical shells. The Kolsky Bar is a loading as well as a measuring device which can subject the shells to a fairly good square pulse. An attempt is made to understand the interaction between the stress wave and the dynamic buckling of cylindrical shells. It is suggested that the dynamic axial buckling of the shells, elastic or elasto-plastic, is mainly due to the compressive wave rather than the flexural or bending wave. The experimental results seem to support the two critical velocity theory for plastic buckling, withV c1 corresponding to an axisymmetric buckling mode andV c2 corresponding to a non-symmetric buckling mode. The project supported by National Natural Science Foundation of China  相似文献   

6.
Conclusions The total potential energy surfaces (V-surfaces) in the adjacent neighborhood of the initial position of the two perfect pin-jointed frames studied in examples 1 and 2 are confined to a three-dimensional space since only two of the members were assumed to be on the point of buckling. If however more than two members of a frame can contract flexurally, the representation of the V-surfaces is not so simple. The negative regions of the V-surface are of primary interest in the study of the post-buckling hehaviour of a frame since then an accelerated motion of the system away from the initial position of the frame may ensue. Therefore in the case of a multi-dimensional surface the location of the negative regions of the surface and the evaluation of the corresponding unstable modes of the given frame may be carried out more conveniently analytically using the expressions given by (2.8) and (2.9).In order to prove that the system is in unstable equilibrium, when the frame is on the point of buckling, it suffices to find at least one adjacent position for which V is negative. This may be a much easier task in the case of a complex frame than representing the entire shape of the surface in a multi-dimensional adjacent space so that the choice of a particular post-buckling mode or the possibility of a snap-through from one mode into another may be fully understood. Similarly, in the case of stable equilibrium of the system when a given frame is on the point of buckling, the result may be obtained quickly if the test for positive definiteness of the quadratic from in the expression for V is carried out.The effect of initial imperfections in the members becomes apparent on comparing the loaddisplacement characteristic of the frame in example 1 with the slope to the equilibrium path for the perfect frame. It is observed that adequate agreement between the two is established when the buckling mode is more fully developed.Then clearly, the initial imperfections in the members can be expected to affect the initial regions of the total potential energy surfaces, but agreement between such surfaces for perfect as well as in perfect frames may be adequate after the initial distortions of the imperfect frame have been overcome.Consequently the V surfaces as well as the stability criterion formulated for perfect frames by expressions 2.10 and 2.11 will in general give an indication of the post-buckling behavior of pin-jointed elastic frames when their members possess initial imperfections.This paper represents a part of the Investigation into the Post Buckling Behavior of Frames sponsored by the Aluminium Development Association of Great Britain and carried out by the author at Cambridge University from the years 1957 to 1960.  相似文献   

7.
We study dynamic crack problems for an elastic plate by using Kane-Mindlin's kinematic assumptions. The general solutions of the Laplace transformed displacements and stresses are first derived. Path independent integrals for stationary cracks subjected to transient loads and steadily growing cracks are deduced. For a stationary crack in a very thin plate subjected to impact loads, the crack tip dynamic stress intensity factor (DSIF), K1(t), is related to the far field plane stress one, K10(t), by where ν is Poisson's ratio. For a crack steadily growing with speed V, the crack tip DSIF, K1(V), is given by where K10(V) is the plane stress DSIF and A(V) and B(V) are known functions of V. These results are applied to compute the DSIF for a semi-infinite stationary crack in an unbounded plate subjected to impact pressure on the crack faces. The results of DSIF for a finite crack in an infinite plate under uniform impact pressure on the crack surfaces show that for each plate thickness, the maximum DSIF is higher than that for the plane stress case.  相似文献   

8.
Part I of this work addressed quasi-static loading of the shear compression specimen (SCS), which has been especially developed to investigate the shear dominant response of materials at various strain rates. The stress and strain states were characterized numerically. Approximations were presented to reduce the measured load,P, and displacement,d, into equivalent stress and strain . This paper addresses dynamic loading of the SCS. Several simulations were made for representative materials, whose stress-strain behavior is assumed to be rate-independent. The results show that stress wave loading induces strong oscillations in theP-d curve. However, the curve remains smooth in the gage section. The oscillations are about the quasistatic load values, so that with suitable filtering of the dynamicP-d curves, the quasi-static ones are readily recovered. Consequently, the approach that was developed for quasi-static loading of the SCS is now extended to dynamic loading situations. The average strain rate is rather constant and scales linearly with the prescribed velocity. As the plastic modulus becomes smaller, the strain rate reaches higher values. Friction at the end pieces of the specimen is also investigated, and shown to have a small overall influence on the determined mechanical characteristics. This paper thereby confirms the potential of the SCS for large strain testing of materials, using a unified approach, over a large range of strain rates in a seamless fashion.  相似文献   

9.
This paper presents the results of a series of experiments on the progressive plastic buckling of cylindrical shells under axial compressive load. It shows that, for shell bodies with anR/t less than 100, the normal axisymmetric ring buckling will develop into nonsymmetric patterns. We demonstrate that there exists also a class of shells within this thickness-radius range for which nonsymmetric plastic buckling always occurs without the prior formation of a ring. It appears from the limited number of tests made that, for a particularR, R/t, material and rate of loading, there is a critical value ofL, above which there is a high probability of the buckle pattern developing in a nonsymmetric fashion. It seems probable, too, that there are bands ofR/t for a particularL/R, R, material and rate of loading for which the buckle number will be constant. The experiments tend to indicate that the postbuckling efficiency of the shell decreases with increasing buckle number. The nonsymmetric patterns demonstrated appear to be inextensional deformations. They are very similar in character to the Yoshimura pattern which occurs as the limiting case for thin shells in axial compression and, under impact loading. Load-displacement histories are presented for some of the various modes of failure demonstrated.  相似文献   

10.
The characterization and testing methods of the dynamic fracture initiation toughness of elastic-plastic materials under tensile impact are studied. By using the self-designed bar-bar tensile impact apparatus, a novel test method for studying dynamic fracture-initiation has been proposed based on the one-dimensional test principle. The curve of average loadv. s. displacement is smooth until unstable crack propagation, and the kinetic energy which does not contribute to the crack growth can be removed from total work done by external-force to the specimen. The fracture-initiation point is determined by compliance-changing rate method. The results show that these methods are feasible and effective. Through the analysis of the conversion between work and energy of a fracture specimen, the dynamicJ-integral is adopted as a characteristic parameter for elastic-plastic materials under impact loading. TheJ-integral is calculated from and curves by using the formula proposed, by Rice. TheJ-integral at fracture initiation is employed to describe the dynamic fracture-initiation toughness of elastic-plastic materials and the experimental results indicate thatJ ID can be regarded as a material constant.  相似文献   

11.
The fundamental unsteady aerodynamics on a vane row of an axial flow research compressor stage are experimentally investigated, demonstrating the effects of airfoil camber and steady loading. In particular, the rotor wake generated unsteady surface pressure distributions on the first stage vane row are quantified over a range of operating conditions. These cambered airfoil unsteady data are correlated with predictions from a flat plate cascade inviscid flow model. At the design point, the unsteady pressure difference coefficient data exhibit good correlation with the nonseparated predictions, with the aerodynamic phase lag data exhibiting fair trendwise correlation. The quantitative phase lag differences are associated with the camber of the airfoil. An aft suction surface flow separation region is indicated by the steady state surface static pressure data as the aerodynamic loading is increased. This separation affects the increased incidence angle unsteady pressure data.List of symbols b airfoil semi-chord - C airfoil chord - C p dynamic pressure coefficient, - p static pressure coefficient, - i incidence angle - k reduced frequency, - N number of rotor revolutions - p dynamic pressure difference - static pressure difference, - S stator vane circumferential spacing - U t rotor blade tip speed - u longitudinal perturbation velocity - V absolute velocity - V axial absolute axial velocity - v transverse perturbation velocity - x sep location of separation point - inlet angle - inlet air density - blade passing angular frequency  相似文献   

12.
Self-similar solution for deep-penetrating hydraulic fracture propagation   总被引:1,自引:0,他引:1  
The propagation of a vertical hydraulic fracture of a constant height driven by a viscous fluid injected into a crack under constant pressure, is considered. The fracture is assumed to be rectangular, symmetric with respect to the well, and highly elongated in the horizontal direction (the Perkins and Kern model). The fracturing fluid viscosity is assumed to be different from the stratum saturating fluid viscosity, and the stratum fluid displacement by a fracturing fluid in a porous medium is assumed to be piston-like. The compressibility of the fracturing fluid is neglected. The stratum fluid motion is governed by the equation of transient seepage flow through a porous medium.A self-similar solution to the problem is constructed under the assumption of the quasi-steady character of the fracturing fluid flow in a crack and in a stratum and of a locally one-dimensional character of fluid-loss through the crack surfaces. Crack propagation under a constant injection pressure is characterized by a variation of the crack sizel in timet according to the lawl(t)=l o (1+At)1/4, where the constantA is the eigenvalue of the problem. In this case, the crack volume isVl, the seepage volume of fracturing fluidV f l 3, and the flow rate of a fluid injected into a crack isQ 0l –1.  相似文献   

13.
An experimental study on pulsating turbulent flow of sand-water suspension was carried out. The objective was to investigate the effect of pulsating flow parameters, such as, frequency and amplitude on the critical velocity, the pressure drop per unit length of pipeline and hence the energy requirements for hydraulic transportation of a unit mass of solids. The apparatus was constructed as a closed loop of 11.4 m length and 3.3 cm inner diameter of steel tubing. Solid volumetric concentrations of up to 20% were used in turbulent flow at a mean Reynolds number of 33,000–82,000. Pulsation was generated using compressed air in a controlled pulsation unit. Frequencies of 0.1–1.0 Hz and amplitude ratios of up to 30% were used. Instantaneous pressure drop and flow rate curves were digitized to calculate the energy dissipation associated with pulsation. The critical velocity in pulsating flow was found to be less than that for the corresponding steady flow at the same volumetric concentration. Energy dissipation for pulsating flow was found to be a function of both frequency and amplitude of pulsation. A possible energy saving was indicated at frequencies of 0.4–0.8 Hz and moderate amplitudes ratios of less than 25%.List of symbols A cross-section area of the tube (m2) - C D drag coefficient of sand particles - C v volumetric concentration (%) - D inner diameter of test-section pipe (m) - F frequency (Hz) - f friction factor - g gravitational constant (m/s2) - J energy dissipation of suspension (W/m)/(kg/s) - J p energy dissipation of pulsating suspension (W/m)/(kg/s) - J s energy dissipation of steady component of suspension (W/m)/(kg/s) - J w energy dissipation of pure water (W/m)/(kg/s) - L length of test-section (m) - m mass flow rate (kg/s) - P pressure drop in test-section (N/m2) - S specific gravity of sand - V instantaneous flow velocity (m/s) - V c steady flow critical velocity (m/s) - V cp pulsating flow critical velocity (m/s) - V F settling velocity of particles (m/s) - V s steady component of mean flow velocity (m/s) - dynamic viscosity (g/cm sec) - m mean density of suspension (kg/m3) - angular velocity (rad/sec) - amplitude ratio (V — V s)/V - nondimentional factor equal to - nondimentional factor equal to (VV s/V - NI nondimentional factor equal to (V 2C d/g D(S – 1)) - Re Reynolds number (V 2C d/C v g D(S – 1))  相似文献   

14.
The wedge subjected to tractions: a paradox re-examined   总被引:2,自引:0,他引:2  
The classical two-dimensional solution for the stress distribution in an elastic wedge loaded by a uniform pressure on one side of the wedge becomes infinite when the wedge angle 2 satisfies the equation tan 235-1. This paradox was resolved recently by Dempsey who obtained a solution which is bounded at 235-2. However, for not equal but very close to 235-3, the classical solution can still be very large as approaches 235-4. In this paper we re-examine the paradox. We obtain a solution which remains bounded as approaches 235-5 and reproduces Dempsey's solution in the limit 235-6. At 235-7 the stress distribution contains a (ln r) term for general loadings. The (ln r) term disappears under a special loading and the stresses are bounded for all r. Moreover, the solution is not unique. In other words, for the wedge angle 235-8 under a special loading, infinitely many solutions exist for which the stresses are bounded for all r. We also obtain solutions which are bounded and approach Dempsey's solutions when 2= and 2. Again, under a special loading infinitely many solutions exist for which the stresses are bounded for all r. Care has been exercised in this paper to present the solutions in a form in which the terms r - and ln r are replaced by R -gl and ln R where R=r/r 0is the dimensionless radial distance and r 0 is an arbitrary constant having the dimension of length.  相似文献   

15.
Dynamic stall experiments on the NACA 23012 aerofoil   总被引:1,自引:0,他引:1  
An experimental investigation was conducted to examine the dynamic stall characteristics of a NACA 23012 aerofoil section at a Reynolds number of 1.5 million. Time-dependent data were obtained from thirty miniature pressure transducers and three hot film gauges situated at the mid-span of the wing. The static stall mechanism of the NACA 23012 was determined to be via abrupt upstream movement of trailing edge separation. Under dynamic conditions, stall was found to occur via leading edge separation, followed by a strong suction wave that moved across the aerofoil. This suction wave is characteristic of a strong moving vortex disturbance. Evidence of strong secondary vortex shedding was also found to occur, and this appears symptomatic of dynamic stall only at low Mach numbers. Some evidence of flow reversals over the trailing edge of the aerofoil were indicated prior to the development of leading edge separation and dynamic stall.List of symbols c aerofoil chord - C L sectional lift coefficient - C M sectional pitching moment coefficient measured about the quarter-chord location - C p pressure-coefficient - k reduced frequency, c/2V - M Mach number - P pressure - R c Reynolds number based on chordc - t time - V free stream velocity - x distance along chord line - y distance along span - angle of attack - a oscillation amplitude - M Mean angle of oscillation - shear stress - circular frequency  相似文献   

16.
In an 1884 paper, Boltzmann showed that for a one-dimensional mechanical system with a convex potential energy that depends on a parameter V, it is possible to define a temperature T, pressure p, and entropy S that satisfy the Gibbs relation TdS = de + p dV, where . In the paper we review the extension of the Boltzmann construction to general natural mechanical systems endowed with a fibration over the (possibly multidimensional) space of macroscopic parameters. Moreover, for certain discrete mechanical systems with non-convex potential energies, which are used as models for phase transitions in solids, we compare the thermodynamic pressure p = p(e,V) introduced above with the quasi-static, macroscopic, stress-strain relation.Received: 20 February 2002, Accepted: 19 May 2003PACS: 5.20.y, 5.45.a, 5.70.ce Correspondence to: F. Cardin  相似文献   

17.
Nonlinear boundaryvalue problems of axisymmetric buckling of simply supported and clamped plates under radial compression are formulated for a system of six firstorder ordinary differential equations with independent fields of finite displacements and rotations. Multivalued solutions are obtained by the shooting method with specified accuracy. Bifurcation of the solutions of the problem is studied, and a parametric bifurcation diagram is constructed for various values of the loading parameter. Curves of buckling modes are given for three branches of the solution. The numerical results agree with available theoretical data.  相似文献   

18.
The dynamic performance of a standard Model R18 Weissenberg Rheogoniometer has been studied in detail. The Rheogoniometer was carefully calibrated and used to measure accurately the rheological behaviour of a highly nonlinear viscoelastic polymer solution (1% polyacrylamide in 50% glycerol/water).In this paper the elaborate procedures that were used to calibrate the electronic signal processing equipment are described. The various static and dynamic calibration/correction factors are defined and incorporated into a computer implemented calculation scheme for evaluating the linear dynamic properties from the raw digital transfer function analyser readings.The linear dynamic properties of the polymer solution are presented together with the corresponding steady shearing properties. Both cone and plate and parallel plates geometries were used and good agreement was obtained over the wide range (six decades) of frequencies and shear rates employed.Fluid inertia effects were found to become important when the modified Reynolds number,Re c 2 orRe(H/R)2, exceeded a value of about 0.1. These effects had a strong influence on the phase angle() which could readily be detected by varying the gap angle/width. The Walters-Kemp equations were found to give consistently accurate values for the linear dynamic properties for modified Reynolds numbers up to 11.6 which was the highest reached.  相似文献   

19.
Summary The fluidity,, of a molten salt is directly proportional to the relative free volume (V – V 0)/V 0. Although the parameterV 0 is closely related to the molar volume of the solid near the melting point the proportionality constant is difficult to interpret in terms of the microscopic or thermodynamic properties of the salt.With 1 figure and 1 table  相似文献   

20.
A detailed analytical and experimental investigation is presented to understand the dynamic fracture behavior of functionally graded materials (FGMs) under mode I and mixed mode loading conditions. Crack-tip stress, strain and displacement fields for a mixed mode crack propagating at an angle from the direction of property gradation were obtained through an asymptotic analysis coupled with a displacement potential approach. This was followed by a comprehensive series of experiments to gain further insight into the behavior of propagating cracks in FGMs. Dynamic photoelasticity coupled with high-speed photography was used to obtain crack tip velocities and dynamic stress fields around the propagating cracks. Birefringent coatings were used to conduct the photoelastic study due to the opaqueness of the FGMs. Dynamic fracture experiments were performed using different specimen geometries to develop a dynamic constitutive fracture relationship between the mode I dynamic stress intensity factor (K ID ) and crack-tip velocity ( ) for FGMs with the crack moving in the direction of increasing fracture toughness. A similar -K ID relation was also obtained for matrix material (polyester) for comparison purposes. The results obtained show that crack propagation velocities in FGMs were about 80% higher than the polyester matrix. Crack arrest toughness was found to be about 10% lower than the value of local fracture toughness in FGMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号