首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GeH4 is thermally cracked over a hot filament depositing 0.7-15 ML Ge onto 2-7 nm SiO2/Si(1 0 0) at substrate temperatures of 300-970 K. Ge bonding changes are analyzed during annealing with X-ray photoelectron spectroscopy. Ge, GeHx, GeO, and GeO2 desorption is monitored through temperature programmed desorption in the temperature range 300-1000 K. Low temperature desorption features are attributed to GeO and GeH4. No GeO2 desorption is observed, but GeO2 decomposition to Ge through high temperature pathways is seen above 750 K. Germanium oxidization results from Ge etching of the oxide substrate. With these results, explanations for the failure of conventional chemical vapor deposition to produce Ge nanocrystals on SiO2 surfaces are proposed.  相似文献   

2.
In this paper, we report on a comparative study of the effect of Fe2O3 nanoparticles (NP), introduced onto a thin oxide layer formed on silicon and germanium surfaces, on the thermal decomposition pathway of the individual oxide layers. On both the surfaces, NP of Fe2O3 undergo a reduction reaction through a bonding partner change reaction, where the oxygen atoms change from Fe to Si or Ge. On both the surfaces, annealing results in the conversion of the suboxide-like species to dioxide-like species (SiOx to SiO2 and GeOx to GeO2 respectively for Si and Ge surfaces), until the oxide layer decomposes following the desorption of the respective monoxide species (SiO and GeO). Both the Si and Ge corelevels show a larger chemical shift (4.1 and 3.51 eV in Si 2p and Ge 3d corelevels, respectively) for the as-prepared oxide samples with the NP, at room temperature compared to that without the NP (3.7 and 3.4 eV), indicating a catalytic enhancement of the dioxide formation. Selective formation of silicon oxides leads to encapsulation of the nanoparticles and acts like a protective layer, preventing the oxidation of Fe.  相似文献   

3.
We report on the characterization of hexagonally ordered, vertically aligned silicon nanowires (SiNW) by means of analytical transmission electron microscopy. Combining colloidal lithography, plasma etching, and catalytic wet etching arrays of SiNW of a sub-50 nm diameter with an aspect ratio of up to 10 could be fabricated. Scanning transmission electron microscopy has been applied in order to investigate the morphology, the internal structure, and the composition of the catalytically etched SiNW. The analysis yielded a single-crystalline porous structure composed of crystalline silicon, amorphous silicon, and SiO x with x≤2.  相似文献   

4.
SiGeO films were deposited by LPCVD using Si2H6, GeH4 and O2 as reactive gases and furnace annealed to segregate the possible excess of Si and Ge in the form of nanocrystals embedded in an oxide matrix. For low GeH4:Si2H6 flow ratios and deposition temperatures of 450 °C or lower, the deposited film consists of a SiO2 matrix incorporating Ge. No Ge oxides and no nanocrystals are detected. After annealing of the samples with SiO2 matrices at temperatures of 600 °C or higher, quasi-spherical isolated Ge nanocrystals with diameters ranging from 4.5 to 9 nm and homogeneously distributed throughout the whole film thickness are formed. In the samples deposited with low GeH4:Si2H6 flow ratios, the original SiO2 matrix holds its composition.  相似文献   

5.
Ge+ ions are implanted into fused silica glass at room temperature and a fluence of 1×10 17 cm-2 . The as-implanted samples are annealed in O2, N2 and Ar atmospheres separately. Ge0 , GeO and GeO2 coexist in the as-implanted and annealed samples. Annealing in different atmospheres at 600℃ leads each composite to change its content. After annealing at 1000℃, there remains some amount of Ge 0 in the substrates. However, the content of Ge decreases due to out-diffusion. After annealing in N2 , Si–N composite is formed. The absorption peak of GeO appears at 240 nm after annealing in O2 atmosphere, and a new absorption peak occurs at 418 nm after annealing in N2 atmosphere, which is attributed to the Si–N composite. There is no absorption peak appearing after annealing in Ar atmosphere. Transmission electron microscopic images confirm the formation of Ge nanoparticles in the as-implanted sample and GeO 2 nanoparticles in the annealed sample. In the present study, the GeO content and the GeO2 content depend on annealing temperature and atmosphere. Three photoluminescence emission band peaks at 290, 385 and 415 nm appear after ion implantation and they become strong with the increase of annealing temperature below 700℃, and their photoluminescences recover to the values of as-grown samples after annealing at 700℃. Optical absorption and photoluminescence depend on the annealing temperature and atmosphere.  相似文献   

6.
The ground state rotational spectrum of germyl fluoride was measured up to 1273 GHz (J ≤ 63). The rotational constants and quartic and sextic centrifugal distortion constants have been determined accurately for five isotopic species in natural abundance (70/72/73/74/76Ge). The high accuracy of the rotational constants of these five isotopomers allowed us to study the mass dependence of the substitution coordinate of Ge. Equilibrium rotational constants of 74GeH3F were deduced with the help of the axial rotational constant and the rotation-vibration interaction constants determined by high resolution infrared spectroscopy. The r0, r,I, and re structures of GeH3F were determined.  相似文献   

7.
Matrix effects are analyzed in the secondary ion mass spectra of quartz samples and SiO2 and SiO x films. The spectral relations between Si+, O+, and Si n O m + ions and the corresponding atomic fragments of the matrix are discussed. Previously revealed correlations between the mass spectrum and the structural features of SiO2 and SiO x are analyzed via the kinetic models of ion mixing.  相似文献   

8.
S. Nozaki  C.Y. Chen  H. Ono  K. Uchida 《Surface science》2007,601(13):2549-2554
Both photo-oxidation and photosynthesis manifest a strong interaction between nanoparticles and photons due to the large surface area-to-volume ratio. The final sizes of the semiconductor nanocrystals are determined by the photon energy during these phenomena. The photosynthesis is demonstrated in a Si-rich oxide and is similar to thermal synthesis, which involves the decomposition of SiOx into Si and SiO2, that is well known and often employed to form Si or Ge nanocrystals embedded in SiO2 by annealing SiOx at high temperature. However, photosynthesis is much faster, and allows the low-temperature growth of Si nanocrystals and is found to be pronounced in the SiO nanopowder, which is made by thermal CVD using SiH4 and O2. The minimum laser power required for the photosynthesis in the SiO nanopowder is much lower than in the Si-rich oxide formed by the co-sputtering of Si and SiO2. This is attributed to the weak bond strength of Si-Si and Si-O in the SiO nanopowder. Photosynthesis, which can control the size and position of Si nanocrystals, is a novel nanofabrication technique making the best use of the strong interaction between photons and nanoparticles.  相似文献   

9.
Self-assembled Ge islands were grown on Si(100) substrate by Si2H6-Ge molecular beam epitaxy. After being subjected to chemical etching, it is found that the photoluminescence from the etched Ge islands became more intense and shifted to the higher-energy side compared to that of the as-deposited Ge islands. This behaviour was explained by the effect of chemical etching on the morphology of the Ge islands. Our results demonstrate that chemical etching can be a way to change the luminescence property of the as-deposited islands.  相似文献   

10.
Amorphous silica [SiOx (1<x<2)] nanowires were fabricated on silicon substrate in an acidic environment by heating the mixture of ZnCl2, and VO2 powders at 1100 °C. The length of SiOx nanowires ranges from micrometers to centimeters, with uniform diameters of 10–500 nm depending on substrate temperature. Room-temperature photoluminescence spectra of the SiOx nanowires showed two strong luminescence peaks in the red and green region, respectively. The photoluminescence was suggested to originate from nonbridging oxygen hole center (red band), and hydrogen-related species in the structure of SiOx (green band). The study on chemical reactions and growth of the SiOx nanowires revealed the formation process of silica nanowires in acidic environment was closely related to the vapor–solid–liquid mechanism.  相似文献   

11.
Manganese nanoparticles were grown in silica glass and silica film on silicon substrate by annealing of the sol-gel prepared porous silicate matrices doped with manganese nitrate. Annealing of doped porous silicate matrices was performed at various conditions that allowed to obtain the nanocomposite glasses with various content of metallic Mn. TEM of Mn/SiO2 glass indicates the bimodal size distribution of Mn nanoparticles with mean sizes of 10.5 nm and 21 nm. The absorption and photoluminescence spectra of Mn/SiO2 glasses were measured. In the absorption spectra at 300 nm (4.13 eV) we observed the band attributed to the surface plasmon resonance in Mn nanoparticles. The spectra proved the creation of Mn2+ and Mn3+ ions in silica glass as well. The absorption spectra of Mn/SiO2 glasses annealed in air prove the creation of manganese oxide Mn2O3. The measured reflection spectra of Mn/SiO2 film manifest at 240-310 nm the peculiarity attributed to surface plasmons in Mn nanoparticles.  相似文献   

12.
Hydrogenated microcrystalline silicon germanium (μc-Si1?xGex:H) films were investigated as a bottom cell absorber in multi-junction solar cells. μc-Si1?xGex:H films were prepared using very high frequency (VHF, 60 MHz) plasma enhanced chemical vapor deposition (PECVD) systems working pressure of about 1.5 Torr. The precursor flow rates were carefully controlled to determine the phase transition point and to improve the crystallinity of μc-Si1?xGex:H. A relatively high plasma power was necessary to have the high hydrogen (H2) dilution. Raman spectroscopy study showed transition steps from amorphous to microstructure morphology as hydrogen dilution increasing. Crystallite Si–Ge and Ge–Ge bonds were occurred at relatively higher H2 dilution compare to crystallite Si–Si bond. The rapidly increased Ge content as increasing the H2 dilution is believed mainly due to the different decomposition rate of silane (SiH4) and germane (GeH4). The other reason of high Ge content even at the low GeH4 precursor flow rate is probably due to the preferential etching of silicon atom by H2. The preferential etching of Si–H possibly occurred in very highly concentrated H2 plasma due to the preferential attachment of Si–H. The compositions of μc-Si1?xGex:H films measured using RBS were Si0.83Ge0.17, Si0.67Ge0.33 and Si0.59Ge0.41 at H2/SiH4 flow rate of 60, 80 and 100, respectively. μc-Si1?xGex:H films showed the dark (σd) and photo conductivity (σp) of about 10?7 and 10?5 S/cm, respectively and photo response (σp/σd) was about 102. This study will present the comprehensive evaluation of crystallization behavior of μc-Si1?xGex:H films.  相似文献   

13.
In the course of plasma etching we can observe a loading effect, i.e. the etch rate depends on the size of the etched surface exposed to the plasma. This phenomenon was explained according to Mogab by the plasma active etch species depletion via a rapid etch reaction. But there exist more coomplicated systems, for example SiO2-photoresist SCR17-CHF3, where the SiO2 surface can be etched and a polymer layer can grow on the photoresist surface. The etching of SiO2 is also influenced by different resists in the case of differences in their chemical structure. The degree of electrode coating with a resist influences both the etch rate of the masking layer. This may be used for the control of the etching selectivity in the SiO2-resist system independently of other process parameters.The author is grateful to Mr. Z. Pokorný for his help in preparing the SiO2 layers used in all experiments.  相似文献   

14.
HfO2 films are deposited by atomic layer deposition (ALD) using tetrakis ethylmethylamino hafnium (TEMAH) as the hafnium precursor, while O3 or H2O is used as the oxygen precursor. After annealing at 500℃ in nitrogen, the thickness of Ge oxide's interfacial layer decreases, and the presence of GeO is observed at the H2O-based HfO2 interface due to GeO volatilization, while it is not observed for the O3-based HfO2. The difference is attributed to the residue hydroxyl groups or H2O molecules in H2O-based HfO2 hydrolyzing GeO2 and forming GeO, whereas GeO is only formed by the typical reaction mechanism between GeO2 and the Ge substrate for O3-based HfO2 after annealing. The volatilization of GeO deteriorates the characteristics of the high-κ films after annealing, which has effects on the variation of valence band offset and the C–V characteristics of HfO2/Ge after annealing. The results are confirmed by X-ray photoelectron spectroscopy (XPS) and electrical measurements.  相似文献   

15.
The CCl4 plasma decomposition and the etching of SiO2 and Al by the CCl4 plasma is investigated with the aid of emission intensity Iλ of such species as Cl2, CCl, Cl and CO, which are influenced systematically by the etching process. A time independent electron density (ne ≈ 2 · 108 ?1 · 1010 cm?3, dependent on plasma conditions) is measured by microwave diagnostics. The ratio Iλ/ne and Iλ/Ireference' resp. (Ireference = IHelium) is a relative measure of concentrations. The ratio Icl2/Iccl is very sensitive against CCl4-decomposition and etching processes of SiO2 and Al. Its changes during the etching process of SiO2 and Al in a CCl4 plasma are investigated.  相似文献   

16.
王兴和  周延怀 《物理学报》2009,58(6):4239-4242
由溶胶/凝胶法制备得到的GeO2/SiO2玻璃在700 ℃的条件下经H2还原,得到具有奇特光致发光性质的Ge/SiO2玻璃,该玻璃在室温条件下用246 nm(5.01 eV)的光激发时,能发射出很强的 392 nm(3.12 eV)、较强的 600 nm(2.05 eV)和次强的770 nm(1.60 eV) 的荧光.利用X射线衍射(XRD)、X射线光电子能谱(XPS)及透射电镜(TEM)实验证明,该玻璃能够发射3种不 关键词: 2')" href="#">Ge/SiO2 Ge纳米晶粒 溶胶/凝胶法 光致发光  相似文献   

17.
《Physics letters. A》1998,244(5):449-453
A blue photoluminescence band centered at 440 nm was observed from SiGeSiO2 co-sputtered films at room temperature. This band gains intensity after the film was annealed at a temperature around 900°C in N2 atmosphere. From analysis of photoluminescence excitation, Raman and X-ray photoelectron spectra, it turns out that the luminescence is probably from some interfacial state between Si1−xGex nanoparticles and the SiO2 matrix.  相似文献   

18.
王长顺  潘煦  Urisu Tsuneo 《物理学报》2006,55(11):6163-6167
利用热氧化法在硅晶片上生长SiO2薄膜,结合光刻和磁控溅射技术在SiO2薄膜表面制备接触型钴掩模,通过掩模方法在硅表面开展了同步辐射光激励的表面刻蚀研究,在室温下制备了SiO2薄膜的刻蚀图样.实验结果表明:在同步辐射光照射下,通入SF6气体可以有效地对SiO2薄膜进行各向异性刻蚀,并在一定的气压范围内,刻蚀率随SF6气体浓度的增加而增加,随样品温度的下降而升高;如果在同步辐射光照射下,用SF6和O2的混合气体作为反应气体,刻蚀过程将停止在SiO2/Si界面,即不对硅刻蚀,实现了同步辐射对硅和二氧化硅两种材料的选择性刻蚀;另外,钴表现出强的抗刻蚀能力,是一种理想的同步辐射光掩模材料. 关键词: 同步辐射刻蚀 接触型钴掩模 二氧化硅薄膜  相似文献   

19.
L. T. San  P. K. Hung 《高压研究》2016,36(2):187-197
The polyamorphism of liquid silica (SiO2) at 3200?K and in a wide pressure range is investigated by molecular dynamics simulation. Results show that the structure of liquid SiO2 consists of five order-parameters that do not depend on compression. Three order parameters that relate to the short-range order are SiOx coordination units (x?=?4, 5, 6) and two order parameters that relate to the intermediate-range order are OSi2 and OSi3 linkages. The structure of liquid silica under compression can be described by the two-state model: low-density and high-density states. The low-density state is formed by clustering of OSi2 linkages (in the low-density state, the short-range order (SRO) is mainly characterized by SiO4 coordination units), conversely, clustering of OSi3 linkages will form high-density state (in the high-density state, the SRO is mainly characterized by SiO5 and SiO6 coordination units). Under compression, in the liquid silica co-exist two phases: low-density and high-density phases. The size of phase regions significantly depends on compression.  相似文献   

20.
Reactive ion etching (RIE) and plasma etching (PE) of different materials (GaAs, Si3N4 SiO2 and photoresist Microposit 1350 H) in freon 116 are compared in the present article. The importance of ion bombardment for the etching rate is evident from the experimental results. GaAs is etched only by RIE due to ion milling, the etching rates of Si3N4 and SiO2 are 4 to 5 times higher by RIE than PE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号