首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Polycrystalline thin films of CuIn2.95Ga0.05Se5 produced by the incorporation of Ga into the ordered vacancy compound CuIn3Se5 by a two-stage vacuum evaporation process were structurally, compositionally and optically characterized using X-ray diffraction, energy dispersive analysis of X-rays and optical absorbance measurements. From the X-ray diffraction data of the films, the structural parameters like lattice constants, tetragonal deformation, bond lengths and anion displacement were evaluated and their effect on the optical behavior of films was discussed. The Hopfields quasi-cubic model adapted for chalcopyrites with tetragonal deformation was used to elucidate the crystal field and spin orbital splitting parameters in the uppermost valence band of the compound, using the three energy gaps 1.649, 1.718 and 1.92 eV corresponding to the threefold absorption in the fundamental absorption region of the optical spectra of these films. The percentage contributions of Se p and Cu d orbitals to p-d hybridization in this compound were calculated using linear hybridization of orbitals model and the effects of p-d hybridization on the band gaps were studied.  相似文献   

2.
Laser-driven plasma sources of femtosecond hard X-ray pulses have found widespread application in ultrafast X-ray diffraction. The recent development of plasma sources working at kilohertz repetition rates has allowed for diffraction experiments with strongly improved sensitivity, now revealing subtle fully reversible changes of the geometry of crystal lattices. We provide a brief review of this development and present a novel plasma source with an optimized mechanical and optical design, providing a high flux of several 1010 photons/s at the Cu-Kα energy of 8.04 keV and a pulse duration of ≤300 fs. First experiments, including the generation of Debye–Scherrer diffraction patterns from Si powder, demonstrate the high performance of this source.  相似文献   

3.
Electrical and optical characterization of (PEO+PVAc) polyblend films   总被引:1,自引:0,他引:1  
Solid polymer blend films based on polyethylene oxide and polyvinyl acetate (PVAc) were prepared in various concentrations by solution cast technique. The features of complexation of the blend films were studied by X-ray diffraction. The electrical conductivity of films was found to increase with increasing PVAc concentration. The conductivity–temperature plots were found to follow Arrhenius nature and showed a decrease in activation energy with increasing PVAc concentration. Optical properties like absorption edge and direct and indirect band gaps were estimated for pure and blend films from their optical absorption spectra. It was found that the energy gap and band edge values shifted to lower energies on blending with PVAc.  相似文献   

4.
CdSe thin films have been electrodeposited potentiostatically onto stainless-steel and fluorine-doped tin oxide-coated glass substrates from an aqueous acidic bath using cadmium acetate ((CH3COO)2Cd·2H2O) as a Cd ion source. Preparative parameters such as deposition potential, solution concentration, bath temperature, pH of the electrolytic bath and deposition time have been optimized by using photoelectrochemical (PEC) technique to obtain well adherent and uniform thin films. The electrodeposits were dark brown in colour. The films have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical absorption techniques. XRD studies reveal that films are polycrystalline, with hexagonal crystal structure. SEM shows that the films are compact, with spherical grains. Optical absorption studies reveal that the material exhibits a direct optical transition having band gap energy ∼1.72 eV. PEC study shows that the films are photoactive.  相似文献   

5.
A photonic band structure of colloidal crystals of silica spheres is analytically determined by a band model with three fitting parameters: the sphere size, the effective refractive index, and the band-gap. Optical properties of the crystals annealed at various temperatures were characterized by a procedure similar to X-ray diffraction technique, and the width of photonic band-gap measured from the transmission spectra experimentally servers as an additional check on the validation of the model. The photonic band structures defined by the band-gap, the refractive index, and the Brillouin zone are obviously superior to the use of the Bragg's expression involving simple zone folding.  相似文献   

6.
Titanium oxide inorganic ion exchange material was synthesized by hydrolysis with water and ammonia solution. Structural feature of the synthesized titanium oxide was analyzed using X-ray diffraction, X-ray fluorescence and infrared spectrometer technique. Tentative formula of titanium oxide was determined and written as TiO2·0.58H2O. Titanium oxide films were deposited on glass substrates by means of an electron beam evaporation technique at room temperature from bulk sample. The films were annealed at 250, 350, 450, and 550 °C temperatures. Transmittance, reflectance, optical energy gap, refractive index and extinction coefficient were investigated. The transmittance values of 85% in the visible region and 88% in the near infrared region have been obtained for titanium oxide film annealed at 550 °C. Kubelka-Munk function was used to evaluate the absorption coefficient which was used to determine the optical band gap. It was found that the optical band gap increases with increasing annealing temperature whereas the refractive index and extinction coefficient decreases.  相似文献   

7.
In2S3 thin films were grown on glass substrates by means of the vacuum thermal evaporation technique and subsequently thermally annealed in nitrogen and free air atmosphere from 250 to 350 °C for different durations. Experimental parameters have been adjusted in order to optimize the annealing conditions, and to obtain high band gap energy at low deposition temperature, as required for photovoltaic applications. In order to improve our understanding of the influence of the deposition and annealing parameters on device performance, we have investigated our indium sulfide material by X-ray diffraction, energy dispersive X-ray analysis (EDAX), atomic force microscopy (AFM) and spectrophotometry. The optical and structural properties of the films were studied as a function of the annealing temperature and durations. X-ray diffraction analysis shows the initial amorphous nature of deposited In-S thin films and the phase transition into crystalline In2S3 upon thermal annealing. Films show a good homogeneity and optical direct band gap energy about 2.2 eV. An annealing temperature of 350 °C during 60 min in air atmosphere were the optimal conditions.  相似文献   

8.
Optical absorption spectra of CuInSe2 chalcopyrite semiconductor films prepared using a two-stage technique were investigated. In addition to absorption measurements, energy-dispersive analysis of X-rays (EDAX) and X-ray diffraction measurements (XRD) were also performed. Direct bandgap energy values for the CuInSe2 films were derived from the variation of (αhν)2 with energy. All the measurements were performed on samples with various Cu/In ratios. It was determined from the absorption measurements that the materials have strong absorption at the fundamental band edge. The Eg values showed an increasing trend with decreasing Cu/In ratios. Received: 26 May 2000 / Accepted: 31 October 2000 / Published online: 10 January 2001  相似文献   

9.
Photoconductivity in Pb2CrO5 thin film prepared by an electron-beam evaporation technique is described. Crystallographically, three kinds of thin films are fabricated which depend on substrate temperature. A sample showing a similar x-ray diffraction profile to the evaporation source material gives the highest photoconductive response. Light illumination from the glass substrate onto the sample improves photoconductivity. A pair of interdigital electrodes is more effective than a pair of planar electrodes on the photoconductive measurement. A band gap energy level of Pb2CrO5 thin film is around 2.2–2.4 eV as a result of the spectral photoconductive response.  相似文献   

10.
ZnSe films were deposited by pulsed laser ablation on a crystalline GaAs substrate and on an amorphous quartz substrate. The deposition process was performed with the same growth parameters. The films were investigated by means of X-ray diffraction, reflectance and photoluminescence spectroscopy. The X-ray diffraction spectra have demonstrated that the films grow in a highly oriented way but having different orientations, i.e. the films deposited on GaAs grow (100)-oriented and the films deposited on quartz grow (111)-oriented. Reflectance spectra as a function of the temperature have been analysed by means of the classical oscillator model, in order to obtain the temperature dependence of the band gap energy. This gives results comparable to those of ZnSe single crystals for ZnSe on GaAs, but it is red-shifted for ZnSe on quartz, because of lattice and thermal strains. The photoluminescence measurements at T = 10 K confirm the better quality of ZnSe deposited on GaAs and show that pulsed laser ablation is a promising technique to grow films having intrinsic luminescence even on an amorphous substrate. Received 29 May 2002 Published online 31 October 2002 RID="a" ID="a"e-mail: giuseppe.perna@ba.infn.it  相似文献   

11.
The synthesis of Cu doped ZnS nanoparticles inside the pore of an inorganic silica gel matrix is presented. The synthesized nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). X-ray diffraction pattern reveals the crystalline wurtzite phase of ZnS. The existence of silica gel in modeling morphologies of the nanoparticles was characterized using Fourier transform infrared (FTIR) spectrometer. Thickness of the silica shell was also calculated. UV- absorption spectrum shows the appearance of an absorption peak at 273 nm which confirms the blue shift as compared to that of bulk ZnS. The photoluminescence (PL) emission spectrum of the sample showed a broad band in the range 465-510 nm due to the transition from the conduction band edge of ZnS nanocrystals to the acceptor like t2 state of Cu.  相似文献   

12.
Thin films of CdIn2S4 have been deposited on to stainless steel and fluorine-doped tin oxide (FTO)-coated glass substrates from aqueous acidic bath using an electrodeposition technique. Ethylene diamine tetra-acetic acid (EDTA) disodium salt is used as complexing agent to obtain good-quality deposits by controlling the rate of the reaction. The different preparative parameters like concentration of bath, deposition time, bath temperature, pH of the bath have been optimized by the photoelectrochemical (PEC) technique in order to get good-quality photosensitive material. Different techniques have been used to characterize CdIn2S4 thin films. Optical absorption shows the presence of direct transition with band gap energy 2.17 eV. The X-ray diffraction (XRD) analysis of the as-deposited and annealed films showed the presence of polycrystalline nature. Energy-dispersive analysis by X-ray (EDAX) study for the sample deposited at optimized preparative parameters shows that the In-to-Cd ratio is almost 2 and S-to-Cd ratio is almost 4. Scanning electron microscopy (SEM) for samples deposited at optimized preparative parameters reveals that spherical grains are uniformly distributed over the surface of the substrate indicates the well-defined growth of polycrystalline CdIn2S4 thin film. PEC characterization of the films is carried out by studying photoresponse, spectral response and photovoltaic output characteristics. The fill factor (ff) and power conversion efficiency (η) of the cell are 69 and 2.94%, respectively.  相似文献   

13.
ZnO is introduced as an alternative to TiO2 in dye sensitized solar cells (DSSCs) due to its band gap similar to TiO2, higher electron mobility, and flexible procedures of preparations. Several samples of ZnO films are prepared with the hydrothermal synthesis method and the sol-gel technique, respectively. These ZnO films were assembled as photoanodes in DSSCs using N3 dye as the sensitizer. The ZnO-based cells prepared by the hydrothermal synthesis show typical current source characteristics, whose fill factor (FF) is 0.44 and photo-to-electric power conversion efficiency is 0.34%. On the other hand, all the samples prepared with the sol-gel technique show accompanied source characteristics with relatively higher power conversion efficiencies (1%) but a lower FF (0.26). X-ray diffraction (XRD) and atomic force microscopy (AFM) measurements indicate that the sol-gel samples have small particles sizes. Therefore, sol-gel samples could adsorb more dye molecules to generate high conversion efficiencies. At the same time, more grain boundaries make it more possible for injected electrons to recombine with the oxidized electrolyte. Hydrothermal samples have bigger grains, so they show poor conversion efficiency and relatively high FF.  相似文献   

14.
Bismuth selenotelluride (Bi2(Te0.9Se0.1)3) films were electrodeposited at constant current density from acidic aqueous solutions with Arabic gum in order to produce thin films for miniaturized thermoelectric devices. X-ray fluorescence spectroscopy determined film compositions. X-ray diffraction pattern shows that the films as deposited are polycrystalline, isostructural to Bi2Te3 and covered by crystallites. Mueller-matrix analysis reveals that the electroplated layers are optically like an isotropic medium. Their pseudo-dielectric functions were determined using mid-infrared spectroscopic ellipsometry. Tauc-Lorentz combined with Drude dispersion relations were successfully used. The energy band gap Eg was found to be about 0.15 eV. Moreover, the fundamental absorption edge was described by an indirect optical band-to-band transition. From Seebeck coefficient measurement, films exhibit n-type charge carrier and the value of thermoelectric power is about −40 μV/K.  相似文献   

15.
EuAlO3 (EAO) is synthesized by the sol–gel process. The Rietveld refinement of the X-ray diffraction data shows that the material has orthorhombic structure with Pbnm space group. The density functional theory calculations are initiated with the experimental lattice parameters. The full potential linearized augmented plane wave method and projector augmented wave method are used to investigate the ground state properties of EAO. An indirect band gap of 1.8 eV is observed with the valence band maximum at the Γ point and the conduction band minimum at the R point. The X-ray photoemission spectroscopy (XPS) spectra of EAO are obtained in the energy window of 0–1000 eV. Using the electronic density of states, the valence band (VB) spectrum of EAO is generated and compared with the observed VB-XPS spectrum. The optical dielectric constant and the refractive index of the material are calculated for the photon energy radiation. The optical properties show a considerable anisotropy in the material. The Born effective charge of various elements and the dielectric tensor of EAO have been calculated.  相似文献   

16.
In this work we report on the properties of chemically deposited CdS thin films in an ammonia-free cadmium-sodium citrate system. We studied the influence on the properties of the films of the pH control of the reaction solution. For this, we deposited two types of CdS films employing two different types of reaction solutions. The only difference between both reaction solutions was the addition of a pH buffer in one of them in order to control its pH throughout the deposition process. Several sets of CdS films were deposited from growth solutions with different contents of Cd to determine also the influence of this parameter on the properties of the films. The CdS films were studied by X-ray diffraction, optical transmission and reflection spectroscopy and scanning electron microscopy measurements. We found that the properties of the films depend both on the amount of Cd in the growth solutions and on their pH control. The increase in Cd in the reaction solution yields to films with shorter lattice constant and then higher energy band gap. On the other hand, the pH control of the reaction produces higher deposition rate, larger final thickness and higher energy band gaps in the CdS films.  相似文献   

17.
We report the characterization of solution-synthesized CdTe and HgTe nanocrystals by X-ray diffraction, transmission electron microscopy, and photoluminescence. Methanol solutions of sodium telluride and cadmium iodide or mercury iodide, respectively, are reacted to precipitate the nanocrystalline metal tellurides, while the sodium iodide byproduct remains in solution. The existence of crystalline CdTe, HgTe, and ternary HgCdTe compounds has been demonstrated by powder X-ray diffraction after a post-synthesis sintering process. Precipitated crystallites from this synthesis were analyzed by transmission electron microscopy, which revealed that crystal diameters can vary from approximately 1 nm to 100 nm and that crystals are stoichiometric within the detection limit of the electron microprobe technique. Narrow size ranges can be selected and investigated due to an in-situ separation process in the electron microscope. Photoluminescence is found at energies above the bulk exciton energy for CdTe and is attributed to near-band-gap recombination which is blue-shifted due to quantum confinement. Both low defect luminescence and dark field imaging suggest a high crystalline quality. A comparative characterization by photoluminescence, transmission electron microscopy, and X-ray diffraction evaluates the effects of heat treatments during and after synthesis.  相似文献   

18.
Resonant X-ray magnetic diffraction profiles were measured for an epitaxial Fe/Cu multilayer using circularly polarized X-rays near the Fe and Cu K-edges. Diffraction intensities were compared with those obtained from the theoretical and empirical models. It is found that the interface Fe moment is reduced to 70% of the inner-layer moment. Concerning the Cu layer, the observed energy dependence of the magnetic diffraction intensities is consistent with that derived from the first-principle band calculation, indicating that magnetic proximity effect in the Cu layer is confined within a few atomic layers near the interface.  相似文献   

19.
Epitaxial growth characteristics of α-MnS on GaAs(1 0 0) substrates have been investigated by X-ray diffraction and double crystal rocking curve measurements. Growth of stoichiometric α-MnS films has been performed by hot-wall epitaxy using Mn and ZnS as a source of sulfur. The films on GaAs(1 0 0) at low substrate temperature exhibit multiphase crystal structures of zincblende and rocksalt, and the main structure is changed to rocksalt with increasing substrate temperature. Photoluminescence spectrum of the α-MnS epilayer at 5 K exhibits broad emission bands, which are attributed to Mn2+ ions. The band gap energy of the α-MnS epilayer at room temperature was also estimated to be about 3.3 eV by reflection.  相似文献   

20.
Photoluminescence and absorption in sol-gel-derived ZnO films   总被引:1,自引:0,他引:1  
Highly c-axis-oriented ZnO films were obtained on corning glass substrate by sol-gel technique. The characteristics of photoluminescence (PL) of ZnO, as well as the exciton absorption in the absorption (UV) spectra are closely related to the post-annealing treatment. The difference between PL peak position and the absorption edge, designated as Stokes shift, is found to decrease with the increase of annealing temperature. The minimum Stokes shift is about 150 meV. The decrease of Stokes shift is attributed to the decrease in carrier concentration in ZnO film with annealing. X-ray diffraction, surface morphology and refractive index results indicate an improvement in crystalline quality with annealing. Annealed films also exhibit a green emission centered at ∼520 nm with activation energy of 0.89 eV. The green emission is attributed to the electron transition from the bottom of the conduction band to the antisite oxygen OZn defect levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号