首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李宏伟  银振强  王双  鲍皖苏  郭光灿  韩正甫 《中国物理 B》2011,20(10):100306-100306
Quantum key distribution is the art of sharing secret keys between two distant parties, and has attracted a lot of attention due to its unconditional security. Compared with other quantum key distribution protocols, the differential phase shift quantum key distribution protocol has higher efficiency and simpler apparatus. Unfortunately, the unconditional security of differential phase shift quantum key distribution has not been proved. Utilizing the sharp continuity of the von Neuman entropy and some basic inequalities, we estimate the upper bound for the eavesdropper Eve's information. We then prove the lower bound for the security of the differential phase shift quantum key distribution protocol against a one-pulse attack with Devatak-Winter's secret key rate formula.  相似文献   

2.
Zhongqi Sun 《中国物理 B》2021,30(11):110303-110303
Reference-frame-independent quantum key distribution (RFI-QKD) can allow a quantum key distribution system to obtain the ideal key rate and transmission distance without reference system calibration, which has attracted much attention. Here, we propose an RFI-QKD protocol based on wavelength division multiplexing (WDM) considering finite-key analysis and crosstalk. The finite-key bound for RFI-QKD with decoy states is derived under the crosstalk of WDM. The resulting secret key rate of RFI-QKD, which is more rigorous, is obtained. Simulation results reveal that the secret key rate of RFI-QKD based on WDM is affected by the multiplexing channel number, as well as crosstalk between adjacent channels.  相似文献   

3.
Feng Zhao  Mingxing Fu  Shaohua Wang 《Optik》2010,121(12):1053-1057
A scheme of quantum network based on multiuser differential phase shift quantum key distribution system (DPS-QKD) is proposed. In this quantum network, arbitrary two users can achieve secret bits sharing by point-to-multipoint quantum key distribution and secret bits comparison. A protocol of secret bits sharing between arbitrary two users is presented. This network can implement secret bits distribution over 200 km with higher key generation rate by today's technologies. In theory, the capacity of user numbers in this network is unlimited. Hence, our proposed quantum network can serve for a metropolitan QKD network. A wide area QKD network can be constructed with this metropolitan QKD network.  相似文献   

4.
Measurement-device-independent quantum cryptographic conferencing(MDI-QCC) protocol suggsts an important scheme for practical multiparty quantum communication. As far as we know, MDI-QCC or MDI-quantum key distribution protocols always assume that the decoy state strategies used at each user's side are the same.In this study, to mitigate the system complexity and to improve the performance of MDI-QCC protocol in the finite-key case, we propose an asymmetric decoy state method for MDI-QCC protocol, and present security analysis and numerical simulations. From numerical simulations, our protocol can achieve better performance in the finite-key case. That is, with a finite data size of 10~(11), it can achieve nonzero secret key rate over 43.6 km.  相似文献   

5.
Quantum key distribution (QKD) has attracted much attention due to its unconditional security. High-dimensional quantum key distribution (HD-QKD) is a brand-new type of QKD protocol that has many excellent advantages. Nonetheless, practical imperfections in realistic devices that are not considered in the theoretical security proof may have an impact on the practical security of realistic HD-QKD systems. In this paper, we research the influence of a realistic intensity modulator on the practical security of HD-QKD systems with the decoy-state method and finite-key effects. We demonstrate that there is a certain impact in the secret key rate and the transmission distance when taking practical factors into security analysis.  相似文献   

6.
This paper proposes a circular threshold quantum secret sharing (TQSS) scheme with polarized single photons. A polarized single photon sequence runs circularly among any t or more of n parties and any t or more of n parties can reconstruct the secret key when they collaborate. It shows that entanglement is not necessary for quantum secret sharing. Moreover, the theoretic efficiency is improved to approach 100% as the single photons carrying the secret key are deterministically forwarded among any t or more of n parties, and each photon can carry one bit of information without quantum storage. This protocol is feasible with current technology.  相似文献   

7.
We introduce a quantum key distribution protocol using mean multi-kings’ problem. Using this protocol, a sender can share a bit sequence as a secret key with receivers. We consider a relation between information gain by an eavesdropper and disturbance contained in legitimate users’ information. In BB84 protocol, such relation is known as the so-called information disturbance theorem. We focus on a setting that the sender and two receivers try to share bit sequences and the eavesdropper tries to extract information by interacting legitimate users’ systems and an ancilla system. We derive trade-off inequalities between distinguishability of quantum states corresponding to the bit sequence for the eavesdropper and error probability of the bit sequence shared with the legitimate users. Our inequalities show that eavesdropper’s extracting information regarding the secret keys inevitably induces disturbing the states and increasing the error probability.  相似文献   

8.
Compared with full device-independent quantum key distribution(DI-QKD), one-side device-independent QKD(1s DI-QKD) needs fewer requirements, which is much easier to meet. In this paper, by applying recently developed novel time–energy entropic uncertainty relations, we present a time–energy high-dimensional one-side device-independent quantum key distribution(HD-QKD) and provide the security proof against coherent attacks. Besides, we connect the security with the quantum steering. By numerical simulation, we obtain the secret key rate for Alice's different detection efficiencies. The results show that our protocol can performance much better than the original 1s DI-QKD. Furthermore, we clarify the relation among the secret key rate, Alice's detection efficiency, and the dispersion coefficient. Finally, we simply analyze its performance in the optical fiber channel.  相似文献   

9.
We propose a quantum error-rejection scheme for direct communication with three-qubit quantum codes based on the direct communication of secret messages without any secret key shared in advance. Given the symmetric and independent errors of the transmitted qubits, our scheme can tolerate a bit of error rate up to 33.1%, thus the protocol is deterministically secure against any eavesdropping attack even in a noisy channel.  相似文献   

10.
王川  张勇 《中国物理 B》2009,18(8):3238-3242
In this paper, we propose a quantum secret sharing protocol utilizing polarization modulated doubly entangled photon pairs. The measurement devices are constructed. By modulating the polarizations of entangled photons, the boss could encode secret information on the initial state and share the photons with different members to realize the secret sharing process. This protocol shows the security against intercept-resend attack and dishonest member cheating. The generalized quantum secret sharing protocol is also discussed.  相似文献   

11.
In this paper, we consider the influence of a divergence of polarization of a quantum signal transmitted through an optical fiber channel on the quantum bit error rate of the subcarrier wave quantum key distribution protocol. Firstly, we investigate the dependence of the optical power of the signal on the modulation indices’ difference after the second phase modulation of the signal. Then we consider the Liouville equation with regard to relaxation in order to develop expressions of the dynamics of the Stokes parameters. As a result, we propose a model that describes quantum bit error rate for the subcarrier wave quantum key distribution depending on the characteristics of the optical fiber. Finally, we propose several methods for minimizing quantum bit error rate.  相似文献   

12.
A detailed analysis has showed that the quantum secret sharing protocol based on the Grover algorithm (Phys Rev A, 2003, 68: 022306) is insecure. A dishonest receiver may obtain the full information without being detected. A quantum secret-sharing protocol is presents here, which mends the security loophole of the original secret-sharing protocol, and doubles the information capacity.  相似文献   

13.
In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noneloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].  相似文献   

14.
This paper presents a simple way for an eavesdropper to eavesdrop freely the secret message in the experimental realization of quantum communication protocol proposed by Beige et al (2002 Acta Phys. Pol. A 101 357). Moreover, it introduces an efficient quantum secure communication protocol based on a publicly known key with decoy photons and two biased bases by modifying the original protocol. The total efficiency of this new protocol is double that of the original one. With a low noise quantum channel, this protocol can be used for transmitting a secret message. At present, this protocol is good for generating a private key efficiently,  相似文献   

15.
In 2011, Qu et al. proposed a quantum information hiding protocol based on the entanglement swapping of χ-type quantum states. Because a χ-type state can be described by the 4-particle cat states which have good symmetry, the possible output results of the entanglement swapping between a given χ-type state and all of the 16 χ-type states are divided into 8 groups instead of 16 groups of different results when the global phase is not considered. So it is difficult to read out the secret messages since each result occurs twice in each line (column) of the secret messages encoding rule for the original protocol. In fact, a 3-bit instead of a 4-bit secret message can be encoded by performing two unitary transformations on 2 particles of a χ-type quantum state in the original protocol. To overcome this defect, we propose an improved quantum information hiding protocol based on the general term formulas of the entanglement swapping among χ-type states.  相似文献   

16.
Recently, a novel kind of quantum key distribution called the round-robin differential phase-shift(RRDPS)protocol was proposed, which bounds the amount of leakage without monitoring signal disturbance. The protocol can be implemented by a weak coherent source. The security of this protocol with a simply characterized source has been proved. The application of a common phase shift can improve the secret key rate of the protocol. In practice, the randomized phase is discrete and the secret key rate is deviated from the continuous case. In this study, we analyze security of the RRDPS protocol with discrete-phase-randomized coherent state source and bound the secret key rate. We fix the length of each packet at 32 and 64, then simulate the secret key rates of the RRDPS protocol with discrete-phase randomization and continuous-phase randomization. Our simulation results show that the performance of the discrete-phase randomization case is close to the continuous counterpart with only a small number of discrete phases. The research is practically valuable for experimental implementation.  相似文献   

17.
Lingzhi Kong 《中国物理 B》2022,31(9):90304-090304
We propose a new scheme to enhance the performance of the Gussian-modulated coherent-state continuous-variable measurement-device-independent quantum key distribution (CV-MDI-QKD) system via quantum scissors (QS) operation at Bob's side. As an non-deterministic amplifying setup, we firstly introduce the QS-enhanced CV-MDI-QKD protocol and then investigate the success probability of the QS operation in accordance with the equivalent one-way scheme. Afterwards, we investigate the effect of the QS operation on the proposed scheme and analyze the performance of the QS-enhanced CV-MDI-QKD system under the extreme asymmetric circumstance. Simulation results show that the QS operation can indeed improve the performance of the CV-MDI-QKD system considerably. QS-enhanced CV-MDI-QKD protocol outperforms the original CV-MDI-QKD protocol in both the maximum transmission distance and the secret key rate. Moreover, the better the performance of QS operation, the more significant the improvement of performance of the system.  相似文献   

18.
GAO Gan 《理论物理通讯》2009,52(3):421-424
We present a two-photon three-dimensional multiparty quantum secret sharing scheme. The secret messages are encoded by performing local operations. This is different from those quantum secret sharing protocols that all sharers must make a state measurement. The merit of our protocol is the high capacity.  相似文献   

19.
We propose a protocol for multiparty quantum secret sharing of secure direct communication using single photons. In this protocol, random phase shift operations instead of some special discrete unitary operations used usually are employed to realize the sharing controls. The security of this protocol with respect to various kinds of attacks is discussed. Due to the complete randomicity of the phase shift characterizing the unitary operations, the security of secret sharing is therefore enhanced.  相似文献   

20.
基于随机相位编码的确定性量子密钥分配   总被引:3,自引:0,他引:3       下载免费PDF全文
提出一种新的随机相位编码的确定性量子密钥分配(QKD)方案.在该方案中,通信双方不需要公布测量基,就可以共享秘密信息,提高了密钥生成效率.因为传输的量子比特是随机编码的,即便光源非严格为单光子,该方案仍旧是安全的.理论分析显示出,对于光子数分裂攻击,中间人攻击和特洛伊木马等攻击手段,本方案比之前的QKD方案具有更强的安全性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号