首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein post-translational modifications provide critical proteomic details towards elucidating mechanisms of altered protein function due to toxic exposure, altered metabolism, or disease pathogenesis. Lysine propionylation is a recently described modification that occurs due to metabolic alterations in propionyl-CoA metabolism and sirtuin depropionylase activity. Acrolein is a toxic aldehyde generated through exogenous and endogenous pathways, such as industrial exposure, cigarette smoke inhalation, and non-enzymatic lipid peroxidation. Importantly, lysine modifications arising from propionylation and acroleination can be isobaric – indistinguishable by mass spectrometry – and inseparable via reverse-phase chromatography. Here, we present the novel application of trapped ion mobility spectrometry (TIMS) to resolve such competing isobaric lysine modifications. Specifically, the PTM products of a small synthetic peptide were analyzed using a prototype TIMS – time-of-flight mass spectrometer (TIMS-TOF). In that the mobilities of these propionylated and acroleinated peptides differ by only 1%, a high-resolution mobility analysis is required to resolve the two. We were able to achieve more than sufficient resolution in the TIMS analyzer (~170), readily separating these isobars.  相似文献   

2.
An improved method for determining the relative biosynthetic rate of isoprenoid cytokinins has been developed. A set of 11 relevant isoprenoid cytokinins, including zeatin isomers, was separated by ultra performance liquid chromatography in less than 6 min. The iP-type cytokinins were observed to give rise to a previously-unknown fragment at m/z 69; we suggest that the diagnostic (204-69) transition can be used to monitor the biosynthetic rate of isopentenyladenine. Furthermore, we found that by treating the cytokinin nucleotides with alkaline phosphatase prior to analysis, the sensitivity of the detection process could be increased. In addition, derivatization (propionylation) improved the ESI-MS response by increasing the analytes' hydrophobicity. Indeed, the ESI-MS response of propionylated isopentenyladenosine was about 34% higher than that of its underivatized counterpart. Moreover, the response of the derivatized zeatin ribosides was about 75% higher than that of underivatized zeatin ribosides. Finally, we created a web-based calculator (IZOTOP) that facilitates MS/MS data processing and offer it freely to the research community.  相似文献   

3.
Anisotropic swelling of wood samples was observed upon treatment with an aqueous NaOH solution with 0–0.20 fraction concentrations. At NaOH concentrations less than 0.10, the swelling occurred only along the tangential axis (T) and not along the radial (R) or longitudinal (L) axes. At greater NaOH levels, the swelling was even more pronounced along T with shrinkage along the other axes. These anisotropic changes along R and L were closely related to the crystallinity of microfibrils in the wood cell wall and simulated with a cell structure model. This exercise revealed microfibril contraction and matrix swelling in the wood cell wall upon NaOH treatment. The observed anisotropy in cross section was caused by differences in the microfibril angles (LR and LT) with the cell wall.  相似文献   

4.
The formation and properties of adsorption layers of poly(dimethyldiallylammonium chloride) with different molecular masses on the surface of fused quartz are studied by the capillary electrokinetics method. It is shown that the value of ζ potential depends on the flow rate of liquid determined by the pressure drop. Such behavior can be explained by the deformation of the adsorption layer. At low rates of liquid flow, constant values of adsorption and time needed to achieve these values decrease for the samples of lower molecular masses, which is probably related to the more closely packed structure and, hence, to the lower deformability of the adsorption layers, as well as to the shortest times during which conformational rearrangements proceed in the layer. The time of conformational changes in the adsorption layer significantly exceeds the time of adsorption. The adsorption of cationic polyelectrolyte is irreversible. It is found that the compaction of adsorption layers increases with time; the rate of compaction of layers of a low-molecular-mass polyelectrolyte is higher and the layers of a high-molecular-mass polyelectrolyte retain the residual deformability even for six days. The measurements of the filtration of polyelectrolyte solutions through thin quartz capillaries allow the thickness of adsorption layers and their deformation under pressure to be estimated.  相似文献   

5.
12-Tungstophosphoric heteropoly acid(TPA) with a Keggin structure was introduced into Al-incorporated mesoporous molecular sieves(AlSBA-15) by the incipient wetness method.The materials were characterized by X-ray diffraction,nitrogen adsorption,scanning electron microscopy,UV-Vis diffuse reflectance and Raman spectroscopy,which confirmed the Keggin and mesopore structure.Its catalytic activity was evaluated under solvent-free conditions in the liquid phase at 333-383 K for the propionylation of anisole with propionic anhydride.The catalysts used were AlSBA-15,10%,20%,and 40% TPA/AlSBA-15,and 20% TPA/MCM-48.In the propionylation of anisole with propionic anhydride,the substitution occurred predominantly at the para position.The 20% TPA/AlSBA-15 catalyst gave a total product yield of 48% with 98% selectivity towards 4-methoxypropiophenone.The regenerability of the catalyst was also studied and was found to be excellent.  相似文献   

6.
O‐(2,3‐dihydroxypropyl) cellulose (DHPC) samples were synthesized by etherification of cellulose with glycidol (GLY) in a NaOH/urea aqueous solution system under different reaction conditions, so that they had different degrees of ether substitution (DS) in both the overall and regional distributions. The characterization was made by NMR spectroscopy in order to clarify the effects of the molar ratio of in‐fed GLY to anhydroglucose unit and of the reaction temperature not only on the total and regional DSs but also on the molar substitution (MSdhp) for the multireactive dihydroxypropyl group. The evaluation of MSdhp was performed after complete propionylation of each DHPC sample. Determination of molecular weights was also conducted on the propionylated DHPCs by GPC analysis. As a preliminary extension, butyralization of DHPC was undertaken in aqueous solution by using p‐toluenesulfonic acid as catalyst together with butyraldehyde (BuA). Two‐dimensional NMR (1H–13C gHSQC) spectra measurements revealed that the products contained butyral groups, owing to dehydration‐cyclization between the BuA‐carbonyl and the duplicate hydroxyls in the side chain of DHPC. Such butyral derivatives of cellulose are expected to be a promising functional material parallel or superior to poly(vinyl butyral) available for safety glass interlayers, etc. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3590–3597  相似文献   

7.
The steady diffusioosmotic flow of an electrolyte solution along a dielectric plane wall caused by an imposed tangential concentration gradient is analytically examined. The plane wall may have either a constant surface potential or a constant surface charge density of an arbitrary quantity. The electric double layer adjacent to the charged wall may have an arbitrary thickness, and its electrostatic potential distribution is determined by the Poisson-Boltzmann equation. The macroscopic electric field along the tangential direction induced by the imposed electrolyte concentration gradient is obtained as a function of the lateral position. A closed-form formula for the fluid velocity profile is derived as the solution of a modified Navier-Stokes equation. The direction of the diffusioosmotic flow relative to the concentration gradient is determined by the combination of the zeta potential of the wall and the properties of the electrolyte solution. For a given concentration gradient of an electrolyte along a plane wall, the magnitude of fluid velocity at a position in general increases with an increase in its electrokinetic distance from the wall, but there are exceptions. The effect of the lateral distribution of the induced tangential electric field in the double layer on the diffusioosmotic flow is found to be very significant and cannot be ignored.  相似文献   

8.
The mechanisms of flow of a face-centred cubic micellar phase were investigated using small-angle X-ray scattering (SAXS) for samples under either steady or oscillatory shear in two different geometries: Couette cell and planar shear sandwich. The system studied was a gel formed by a poly(oxyethylene)–poly(oxypropylene) diblock copolymer in water. SAXS indicated that under steady shear in a Couette cell, flow occurs via sliding of hexagonal close-packed (hcp) layers with a close-packed [110] direction along the shear direction. Under oscillatory shear in the planar shear sandwich, coexistence between this orientation and one in which the hcp layers are rotated by 30° (and flow is in a [211] direction) was observed; however, when subject to oscillatory shear in the Couette cell, flow only occurred along a [110] direction. This observation of flow in a non-close-packed direction may be due to alignment induced by the walls of the shear sandwich. Received: 24 February 2001 Accepted: 21 March 2001  相似文献   

9.
A novel method is described for measuring the deformability of red blood cells (RBCs) in tubing whose diameters approximate forces encountered in vivo. Here, RBCs from rabbits are loaded into a 50 cm section of 75 microm id microbore tubing and connected to a syringe pump. This section of tubing is then connected to a 15 cm section of 25 microm id tubing. As buffer is pumped through the flow system, the RBCs are evacuated from both sections of tubing. However, the inability of the RBCs to move freely through the 25 mirom id section of tubing results in a buildup of cells at the inlet of this portion of tubing. The continued force output by the syringe pump results in a deformation of the RBCs until all of the cells are eventually evacuated from the flow system. It was found that a measurement of the time required to reach half of the maximum pressure (1/2 P(max)) may be used as an indicator of the RBC deformability. For a given sample, a simple buffer results in less time to reach 1/2 P(max) (6.9 +/- 0.2 s) than deformable RBCs (21.6 +/- 0.8 s). To verify that the increased amount of time to reach 1/2 P(max) is indeed due to the RBCs, various hematocrits of an RBC sample were investigated and, as expected, it was found that a 12% RBC hematocrit had a higher 1/2 P(max) value (26.0 s +/- 2.2 s) when compared to a 7% hematocrit (19.1 +/- 0.3 s). In addition, RBCs chemically stiffened with glutaraldehyde were shown to be 25% less deformable than normal RBCs. Finally, a study was performed to examine the relationship between RBC deformability and ATP release and it was found that ATP release increased as a function of RBC deformability. This method greatly simplifies deformability measurements, employing only a syringe pump and microbore tubing, and may lead to a more complete understanding of the physiological significance of erythrocyte deformability.  相似文献   

10.

Steam explosion is a useful method to soften and dimensionally stabilizing wood. A significant increase in air permeability and sound absorption capability of steam-exploded palmwood compared to untreated palmwood is observed due to changes in cell wall. Cell wall’s changes are characterized by instrumental techniques such as Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscope and gas permeability by capillary flow porometry and sound absorption coefficient by two-microphone transfer function method. The average increase in air permeability (259.3%) and sound absorption coefficient (52.33% at frequency range of 250–6400 Hz) of steam-exploded samples is higher than that of untreated samples. Color of steam-exploded woods become black due to chemical reactions in cell wall during steam explosion. The color change, air permeability and sound absorption coefficient of wood are correlated with the findings. These results suggest that low-pressure steam explosion could be considered as an effective technique for improving the air permeability and sound absorption capability of palmwood in the longitudinal direction. This approach could be useful to manufacture sound absorption board to control the acoustical housing environment.

  相似文献   

11.
The research article focused on the effect of wood sawdust as secondary filler reinforcement in Indian mallow fiber yarn mat reinforced with polyester composites. Composites were fabricated along the transverse and longitudinal orientation in six different combinations by compression molding machine. The mechanical properties of composites by single and double layer yarn mat with and without wood sawdust filler were evaluated while loading composites specimen on warp and weft direction at the first time in this research paper. The Indian mallow fiber double layer longitudinal orientation yarn mat/wood sawdust filler/polyester composite specimen along the warp direction was found to exhibit optimum mechanical properties compared to other composites. Furthermore, the Indian mallow fiber yarn mat composites were fabricated with helmet and civil construction pipes at first time in this work to replace the synthetic fiber through natural fiber. Scanning electron microscopy was performed to study the morphologies of internal crack and fractured surface of composites.  相似文献   

12.
The flow of a simple gas along a plane surface under the action of tangential temperature gradient is considered. The velocity of thermal slip is calculated by the variational method with account of the effect of surface forces. It is shown that, in some situations, surface forces can substantially affect the value of the thermal slip coefficient.  相似文献   

13.
Interfacial pressure and density profiles are calculated from molecular dynamics and lattice Boltzmann simulations of a liquid film in equilibrium with its vapor. The set of local values of tangential pressure and density along an interface exhibits a van der Waals-type loop; starting from the stable vapor bulk phase one passes through metastable and unstable states to the stable liquid bulk phase. The minimum and maximum values of the profile of tangential pressure are related to the liquid and vapor spinodal states, respectively. The spinodal pressures turn out to be linearly related to the extreme values of the tangential pressure in the interface. The comparison with equations of state shows good agreement with the simulation results of the spinodals. In addition the properties of the metastable region are obtained. Based on this investigation a method is proposed for the estimation of the liquid spinodal from experimentally obtained interfacial properties. Estimations for water and helium are presented.  相似文献   

14.
Guo Q  Reiling SJ  Rohrbach P  Ma H 《Lab on a chip》2012,12(6):1143-1150
Red blood cells parasitized by Plasmodium falciparum can be distinguished from uninfected cells and characterized on the basis of reduced deformability. To enable improved and simplified analysis, we developed a microfluidic device to measure red blood cell deformability using precisely controlled pressure. Individual red blood cells are deformed through multiple funnel-shaped constrictions with openings ranging from 5 down to 1 μm. Precisely controlled pressures are generated on-chip using a microfluidic circuit that attenuates an externally applied pressure by a factor of 100. The pressures required to squeeze each cell through the constriction are used as a readout to determine the intrinsic stiffness of each cell. Using this method, parasitized cells from ring through schizont stages were shown to be 1.5 to 200 times stiffer than uninfected cells. The measured deformability values of uninfected and parasitized cells showed clearly distinct distributions, demonstrating the potential of using this technique to study the pathophysiology of this disease, and the effect of potential drugs.  相似文献   

15.
The oxidative destruction of lignin in the ozonation of aspen wood was studied. The kinetic curves of ozone consumption for samples with different contents of water were obtained. The consumption of ozone increased as the content of water grew. The second derivatives of the UV absorption spectra of lignin were obtained to show that the principal direction of lignin transformations under the action of ozone was the destruction of its aromatic constituents with the formation of carboxyl- and carbonyl-containing compounds. Measurements of the UV diffuse reflectance and EPR spectra of wood showed that the ozonation of wood caused the destruction of lignin quinoid structures. Part of lignin remained unchanged under the action of ozone. A key role in the destruction of wood lignin was played by ozone dissolved in water. Varying the content of water in wood samples allows various lignin transformation products to be obtained through ozonation.  相似文献   

16.
We measured the lattice spacing of the cellulose in sugi (Cryptomeria japonica D. Don) and hinoki (Chamaecyparis obtusa Endl.) cell walls under wet and dry conditions. We gave all specimens repeated wet-and-dry treatments and tried to induce substantial changes in the microstructure of the wood cell wall. Macroscopic dimensions, measured using a micrometer, showed well-known behaviors, that is, shrinkage by drying and swelling by wetting, which were unaffected after the repeated wet-and-dry treatments in both longitudinal and tangential directions. On the other hand, lattice spacing, measured using an X-ray diffractometer, showed different results. In particular, d 200 lattice spacing expanded considerably with drying in the early stages of repeated wet-and-dry treatments. The d 200 lattice spacing in the dried specimen then became gradually smaller in the later stages, whereas no such dynamic change was observed in d 004 lattice spacing throughout the repeated wet-and-dry treatments. Once the d 200 lattice spacing in the dried specimen had become smaller after giving wet-and-dry treatments, it did not recover, even after soaking in distilled water for 1 month. These results suggest that repeated drying and re-swelling caused structural changes in the wood cell wall, specifically an interfacial separation between cellulose microfibrils and matrix substances.  相似文献   

17.
Jing L  Dan G  Jianbin L  Guoxin X 《Electrophoresis》2011,32(3-4):414-422
A numerical method is used to simulate the motion and coalescence of air bubbles in a micro-channel under a nonuniform electric field. The channel is equipped with arrays of electrodes embedded in its wall and voltages are applied on the electrodes to generate a specified electric field gradient in the longitudinal direction. In the study, the Navier-Stokes equations are solved by using the level set method handling the deformable/moving interfaces between the bubbles and the ambient liquid. Both the polarization Coulomb force and the dielectrophoresis force are considered as the force source of the Navier-Stokes equations by solving the Maxwell's equations. The flow field equations and the electric field equations are coupled and solved by using the finite element method. The electric field characteristics and the dynamic behavior of a bubble are analyzed by studying the distributions of the electric field and the force, the deformation and the moving velocity of the air bubble. The result suggests that the model of dispersed drops suspended in the immiscible dielectric liquid and driven by a nonuniform electric field is an effective method for the transportation and coalescence of micro-drops.  相似文献   

18.
McFaul SM  Lin BK  Ma H 《Lab on a chip》2012,12(13):2369-2376
The separation of biological cells by filtration through microstructured constrictions is limited by unpredictable variations of the filter hydrodynamic resistance as cells accumulate in the microstructure. Applying a reverse flow to unclog the filter will undo the separation and reduce filter selectivity because of the reversibility of low-Reynolds number flow. We introduce a microfluidic structural ratchet mechanism to separate cells using oscillatory flow. Using model cells and microparticles, we confirmed the ability of this mechanism to sort and separate cells and particles based on size and deformability. We further demonstrate that the spatial distribution of cells after sorting is repeatable and that the separation process is irreversible. This mechanism can be applied generally to separate cells that differ based on size and deformability.  相似文献   

19.
Vastamäki P  Jussila M  Riekkola ML 《The Analyst》2003,128(10):1243-1248
Two-dimensional thermal field-flow fractionation (2D-ThFFF) is a new instrumental technique devised for continuous fractionation of soluble macromolecules and particles. The sample mixture is introduced into a disc-shaped channel and the separated sample components are collected continuously from the channel outlets. The method is based on a two-dimensional fractionation mechanism with radial and tangential flow components in the channel. The effects of flow components and thermal gradient on the fractionation were studied in the separation of polystyrene samples of different molecular masses using cyclohexane or a binary solvent consisting of 25% ethylbenzene and 75% cyclohexane as carrier. The continuous separation of polystyrene samples was improved with increasing thermal gradient and with the use of slow radial and tangential flow rates. The technique can be applied to preparative continuous separation of macromolecules.  相似文献   

20.
The steady diffusioosmotic flows of an electrolyte solution along a charged plane wall and in a capillary channel between two identical parallel charged plates generated by an imposed tangential concentration gradient are theoretically investigated. The plane walls may have either a constant surface potential or a constant surface charge density. The electrical double layers adjacent to the charged walls may have an arbitrary thickness and their electrostatic potential distributions are determined by the Poisson-Boltzmann equation. Solving a modified Navier-Stokes equation with the constraint of no net electric current arising from the cocurrent diffusion, electric migration, and diffusioosmotic convection of the electrolyte ions, the macroscopic electric field and the fluid velocity along the tangential direction induced by the imposed electrolyte concentration gradient are obtained semianalytically as a function of the lateral position in a self-consistent way. The direction of the diffusioosmotic flow relative to the concentration gradient is determined by the combination of the zeta potential (or surface charge density) of the wall, the properties of the electrolyte solution, and other relevant factors. For a given concentration gradient of an electrolyte along a plane wall, the magnitude of fluid velocity at a position in general increases with an increase in its electrokinetic distance from the wall, but there are exceptions. The effect of the lateral distribution of the induced tangential electric field and the relaxation effect in the double layer on the diffusioosmotic flow are found to be very significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号