首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 999 毫秒
1.
Developing conductive networks in a polymer matrix with a low percolation threshold and excellent mechanical properties is desired for soft electronics applications. In this work, natural rubber (NR) functionalized with poly(methyl methacrylate) (PMMA) was prepared for strong interfacial interactions with multiwalled carbon nanotubes (MWCNT), resulting in excellent performance of the natural rubber nanocomposites. The MWCNT and methyl methacrylate functional groups gave good filler dispersion, conductivity and tensile properties. The filler network in the matrix was studied with microscopy and from its non-linear viscoelasticity. The Maier-Göritze approach revealed that MWCNT network formation was favored in the NR functionalized with PMMA, with reduced electrical and mechanical percolation thresholds. The obvious improvement in physical performance of MWCNT/methyl methacrylate functionalized natural rubber nanocomposites was caused by interfacial interactions and reduced filler agglomeration in the NR matrix. The modification of NR with poly(methyl methacrylate) and MWCNT filler was demonstrated as an effective pathway to enhance the mechanical and electrical properties of natural rubber nanocomposites.  相似文献   

2.
Hexagonal boron nitride (BN) platelets, also known as white graphite, are often used to improve the thermal conductivities of polymeric matrices. Due to the poor interfacial compatibility between BN platelets and polymeric matrices, in this study, polyrhodanine (PRd) was used to modify BN platelets and prepared functionalized BN-PRd platelets, thereby enhancing the interfacial interaction between the thermal conductive filler and polymeric matrix. Then, BN-PRd platelets were dispersed into the nitrile butadiene rubber (NBR) matrix to yield high thermally conductive composites. The presence of N? C═S groups in PRd allowed the combination of PRd and NBR chains containing stable covalent bonds via vulcanization reaction. The thermal conductivity of the as-prepared 30 vol% BN-PRd/NBR composite reached 0.40 W/mK, representing an increment of 135% over pure NBR (0.17 W/mK). In addition, the largest tensile strength of NBR composite containing 30 vol% BN-PRd platelets was 880% times of pure NBR. The 30 vol% BN-PRd/NBR composite also displayed a relatively high dielectric constant (9.35 at 100 Hz) and a low dielectric loss tangent value (0.07 at 100 Hz), indicating their usefulness as dielectric flexible materials of microelectronics. In sum, the simplicity and good efficiency of formation of covalent bonds between boron nitride and rubber chains look very promising for large-scale industrial production of high thermally conductive composites.  相似文献   

3.
A thermal conductivity of 32.5 W/mK is achieved for a boron nitride-filled polybenzoxazine at its maximum filler loading of 78.5% by volume (88% by weight). The extraordinarily high conductivity value results from outstanding properties of the polybenzoxazine matrix and the boron nitride filler. The bisphenol-A–methylamine-based polybenzoxazine possesses very low A-stage viscosity which aids in filler wetting and mixing. The filler particles with an average size of ca. 225 μm are large aggregates of boron nitride flake-like crystals. It has bimodal particle size distribution which assists in increasing the particle packing density. This filler–matrix system provides a highly thermally conductive composite due to the capability of forming conductive networks with low thermal resistance along the conductive paths. The SEM picture of the composite fracture surface reveals good interfacial adhesion between the boron nitride filler and polybenzoxazine matrix. Water absorption of the filled systems at 24 h is <0.1% and decreases with increasing filler content.  相似文献   

4.
This paper presents the properties of epoxy nanocomposites, prepared using a synthesized hybrid Polypyrrole-Graphene Oxide (PPy-GO) filler, via in-situ chemical polymerization, at various filler loadings (i.e., 0.5–2 w. t %). The microstructures and properties of the PPy-GO hybrids and epoxy nanocomposites were studied via Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), mechanical (Tensile Properties), electrical, Dynamic mechanical thermal analysis (DMTA) and thermogravimetric analyses (TGA). Morphological study demonstrated that varying the nanofiller nature (PPy-GOs, PPy or GO) lead to different states of dispersion. Mechanical, electrical and thermal analysis demonstrated that the hybrid concentration and its architecture (PPy:GO ratio) are interesting factors significantly affected the properties of the epoxy based nanocomposites. On the other hand, the mechanical performance of the cured nanocomposites outperformed the PPy-GO, with enhancements of 78% and 51% of Young's modulus and strength, respectively. Here it has been established that the embedding of PPy-GO hybrids into pristine epoxy endows optimum dispersion of PPy and GO as well as better interfacial adhesion between the fillers and matrix, which results in a significant improvement in load transfer effectiveness. Electrical conductivity measurements showed that conductivity of epoxy filled nanocomposites increased up 10−4 S/cm for Epoxy/PPy-GO nanocomposites. DMTA test indicated that incorporation of PPy-GO resulted in a significantly increase in Tg of the resultant nanocomposites, which is attributed to the highly exfoliation structure and the stronger interfacial interaction. The PPy-GO particles enhanced electrical, thermal and mechanical properties of nanocomposites, confirming the synergistic effect of PPy-GO as multifunctional filler.  相似文献   

5.
Polyphenylene sulfide (PPS) is a promising engineering polymer, which is used for various industrial applications. In this study, we developed a highly thermally conductive PPS composite containing boron nitride (BN) as a thermally conductive ceramic filler. (3‐Aminopropyl) triethoxysilane was doped onto the surface of hydroxyl‐functionalized BN using a simple sol–gel process. The modified BN particles were embedded in a PPS matrix via a melt mixing process using a twin extruder to form BN‐Si composites. The maximum thermal conductivity 3.09 W/m·K was exhibited by the surface‐modified BN‐Si containing 60 wt%. This value was 116% higher than the thermal conductivities of the pristine BN and PPS matrix, respectively. The surface‐treated composites also showed an improved storage modulus because of an improvement in the interfacial adhesion and interaction between the BN filler and the PPS matrix. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
With the continuous development of the electronics industry, in order to meet the requirements of electronic equipment to reduce the size and increase power consumption, the development of high thermal conductivity materials is crucial. In this study, thermally conductive polylactic acid (PLA) composites were prepared by constructing graphene and alumina (Al2O3) hybrid filler network, and it was further successfully used in additive manufacturing. Due to the synergistic effect of Al2O3 and graphene, the resulting composite achieved the thermal conductivity of 2.4 Wm?1 K?1 with 70 wt% Al2O3 and 1 wt% graphene, which are superior to data reported in the literature in the same filler condition. The Al2O3 and graphene hybrid filler network reduced the agglomeration of graphene and the thermal contact resistance between the fillers, thereby leading a faster cooling rate. Furthermore, the obtained thermally conductive PLA composite has good thermal stability at a normal temperature. The PLA composite powder obtained by the cryogenic pulverization can be used in the laser sintering additive manufacturing process to prepare a heat conductive material with a complicated shape.  相似文献   

7.
The effect of incorporating sorbic acid (SA), an echo-friendly curing agent, and silica or carbon black (CB) filler, as well as gamma irradiation on the physico-chemical, mechanical and thermal properties of ethylene propylene diene monomer rubber (EPDM) was investigated. The results indicated that the developed composites revealed improvement in the studied parameters over the untreated samples. Filler incorporation into rubber matrix has been proven a key factor in enhancing the swelling resistance, tensile strength and thermal properties of the fabricated composites. The improvement in tensile strength and modulus was attributed to better interfacial bonding via SA. Alternatively, a comparison was established between the performance of the white and black fillers. The utmost mechanical performance was reported for the incorporated ratios 10 phr SA and 40 phr white filler into a 50 kGy irradiated composite. Meanwhile, the incorporation of CB yielded better thermally stable composites than those filled with silica at similar conditions.  相似文献   

8.
The typical nano-carbon materials, 1D fiber-like carbon nanotubes (CNTs) and 2D platelet-like graphene nanosheets (GRNs), that have attracted tremendous attention in the field of polymer nanocomposites due to their unprecedented properties, are used as conducting filler to induce a considerable improvement in the mechanical, thermal and electrical properties of the resulting graphene/polymer nanocomposites at very low loading contents. This study deals with the preparation and electro-stimulus response properties of polyurethane (PU) dielectric elastomer films with such 1D and 2D nanocarbon fillers embedded in the polymer matrix. The various forms of carbon used in composite preparation include CNT, GRN and CNT-GRN hybrid fillers. Results indicate that the dielectric, mechanical and electromechanical properties depend on the carbon filler type and the carbon filler weight fraction. Here, it has been also established that embedding CNT-GRN hybrid fillers into pristine polyurethane endows somewhat better dispersion of CNTs and GRNs as well as better interfacial adhesion between the carbon fillers and matrix, which results in an improvement in electric-induced strain. Therefore, the nanocomposites seem to be very attractive for microelectromechanical systems applications.  相似文献   

9.
To better understand the effect of rectorite and carbon black (CB) on the aging performance of styrene-butadiene rubber (SBR), SBR/CB, SBR/CB/rectorite and SBR/rectorite nanocomposites with the same total filler loading were prepared. The microstructure of the three SBR nanocomposites was characterized by XRD, TEM and SEM. After thermal aging, oxygen-containing molecules were found to be formed in the SBR nanocomposites, as verified by FTIR analysis. The SBR/rectorite nanocomposite showed the highest aging coefficient and the lowest change rate of tensile strength and stress at 100% strain among the three SBR nanocomposites, indicating that the introduction of nano-dispersed rectorite layers can enhance the thermal aging resistance of the nanocomposites. For the SBR/CB/rectorite nanocomposite, the addition of CB helped to improve the interfacial compatibility between the filler and matrix, resulting in the best crack resistance as the aged SBR/CB/rectorite nanocomposite always demonstrated the least cracks on the surface during either stretching or bending experiments.  相似文献   

10.
This work addresses the optimization of the morphology, thermal, and mechanical properties of polypropylene/layered double hydroxide (LDH) nanocomposites. For this, the nanofillers were modified by a calcination rehydration process using two surfactants, sodium dodecylsulfate (SDS) and sodium dodecylbenzenesulfonate, respectively. The nanofillers were characterized at each step of the modification process by thermal gravimetry, X‐ray diffraction, and Infra red spectroscopy. Furthermore, the impact of anionic modifiers on the filler surface energy and on the interactions toward water was analyzed. Polypropylene (PP)/LDH nanocomposites were then prepared by a melt intercalation process and a high molar mass maleic anhydride functionalized polypropylene (PPgMA) was introduced as a compatibilizer. The dispersion of LDH in the PP matrix was characterized and the thermal and mechanical properties of the corresponding nanocomposites were determined and discussed as a function of the filler modification, of the nanocomposite morphology, and of the filler/matrix interfacial properties. The nanocomposites prepared from SDS modified LDH and PPgMA exhibited superior properties thanks to an optimized filler dispersion state and improved interfacial interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 782–794  相似文献   

11.
Development of high thermally conductive and electrically insulative composites is of interest for electronic packaging industry. Advancements in smaller and more compact electronic devices required improvements in packing materials, including their weight, thermal conductivity, and electrical resistivity. In addition, with the increasing environmental awareness, the usage of green (bio‐based) alternatives was equally important. In the present study a hybrid based on fibers of highly concentrated hexagonal boron nitride (hBN) in liquid crystal polymer (LCP) matrix were fabricated. These hybrids were formed by arranging hBN platelets into LCP fiber form to reach high filler concentration and then randomly mix it in polylactide (PLA) matrix. With appropriate filler interaction within the hybrid, thermal conductivity similar to that of pure fiber could be achieved. Filler interaction may be tailored by optimizing the fibers aspect ratio. This study demonstrated the effect of random fillers in fibers shape in increasing the overall thermal conductivity of PLA polymeric hybrid using hBN and LCP fibers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 457–464  相似文献   

12.
The positive liquid crystals, 4′-heptyl-4-biphenylcarbonitrile (7CB), are used to functionalize carbon nanotubes (LC-CNT), which can be aligned in the liquid crystalline polyimide (LC-PI) matrix under an alternating electric field to fabricate the thermally conductive LC-CNT/LC-PI composite films. The efficient establishment of thermal conduction pathways in thermally conductive LC-CNT/LC-PI composite films with a low amount of LC-CNT is achieved through the oriented alignment of LC-CNT within the LC-PI matrix. When the mass fraction of LC-CNT is 15 wt %, the in-plane thermal conductivity coefficient (λ) and the through-plane thermal conductivity coefficient (λ) of the LC-CNT/LC-PI composite films reach 4.02 W/(m ⋅ K) and 0.55 W/(m⋅K), which are 90.5 % and 71.9 % higher than those of the intrinsically thermally conductive LC-PI films respectively, also 28.8 % and 5.8 % higher than those of the CNT/LC-PI composite films respectively. Meanwhile, the thermally conductive LC-CNT/LC-PI composite films also possess excellent mechanical and heat resistance properties. The Young's modulus and the heat resistance index are 2.3 GPa and 297.7 °C, respectively, which are higher than the intrinsically thermally conductive LC-PI films and the thermally conductive CNT/LC-PI composite films under the same amount of CNT.  相似文献   

13.
Activated carbon derived from oil palm empty fruit bunch (AC-EFB), bamboo stem (AC-BS), and coconut shells (AC-CNS) were obtained by pyrolysis of agricultural wastes using two chemical reagents (H3PO4 or KOH). The AC-EFB, AC-BS and AC-CNS were used as filler in preparation of epoxy nanocomposites. Epoxy nanocomposites prepared at 1, 5 and 10 % activated carbons filler loading using KOH and H3PO4 chemical agents. Transmission electron microscopy confirms better dispersion of the nano-activated carbons in the epoxy matrix at 5 % activated carbon. The presence of 5 % AC-CNS in the epoxy matrix using H3PO4 chemical reagent resulted in an improvement of the thermal stability of epoxy matrix. KOH treated AC filled epoxy nanocomposites were slightly better in thermal stability as compared to H3PO4 treated AC filled epoxy nanocomposites, may be due to better interaction of filler with epoxy matrix. Thermal analysis results showed that thermal stability of the activated carbon filled epoxy nanocomposites improved as compared to the neat epoxy matrix. The degree of crystallinity of epoxy matrix was improved by adding the activated carbon due to interfacial interaction between AC and epoxy matrix rather than loading of AC alone. Developed nanocomposites from biomass (agricultural wastes) materials will help to reduce the overall cost of the materials for its demanding applications as insulating material.  相似文献   

14.
Silicone rubber filled with thermally conductive, but electrically insulating Al2O3 or ZnO fillers were investigated to be used as elastomeric thermal pads, a class of thermal interface materials. The effect of Al2O3 or ZnO fillers on the thermal conductivity and coefficient of thermal expansion (CTE) of the silicone rubber were investigated, and it was found that with increasing Al2O3 or ZnO fillers, the thermal conductivity of the thermal pads increases, while the coefficient of thermal expansion (CTE) decreases. The thermal conductivity results obtained were also analyzed using the Agari model to explain the effect of Al2O3 or ZnO fillers on the formation of thermal conductive networks. Thermal gravimetry analysis (TGA) showed that the addition of either Al2O3 or ZnO fillers increases the thermal stability of the silicone rubber, while the scanning electron microscope (SEM) showed that at 10 vol.% filler loading percolation threshold has yet to be reached.  相似文献   

15.
Natural rubber obtained from a milky colloid (latex) extras mainly from the tree Hevea Brasiliensis is approximately 95% cis-polyisopren has important physical properties. Among its shortcomings are resistance to aging and thermal stability that limits its applications. The use of fillers in rubber is almost as old as the use of rubber itself. ZnO originally used for whiteness was the first “active” filler. In 1904 carbon black was discovered and since then became the most important powder used in rubber technology. Recently various mineral and organic nanoparticles are studied as reinforcements for elastomers in view -with minimum amounts – to achieve required properties. Natural rubber nanocomposites bring together mechanical and thermal properties from the rubber matrix and special characteristics of the nanoparticles.  相似文献   

16.
Due to the importance in economic and environmental benefits, marine biomass has gained increasing attention in recent years. In this work, marine biomass-based materials were prepared and characterized. Highly reinforcing cellulose nanocrystals (CNCs) with length of 1–2 μm and aspect ratio of ~75 were extracted from tunicates (t-CNCs), and CNCs with length of 100–300 nm and aspect ratio of ~15 from cotton (c-CNCs) were presented for comparison. In order to enhance interfacial interactions between CNCs and rubber, modification of natural rubber (NR) was conducted via epoxidation reaction to obtain epoxidized NR (ENR). Fully bio-based rubber nanocomposites were produced by latex mixing. Compared with NR nanocomposites, hydrogen bonding formed between ENR and CNCs, which led to homogeneous dispersion of CNCs and enhanced interfacial adhesion between them. Moreover, t-CNCs with longer length and larger aspect ratio facilitate filler entanglements, which led to higher reinforcing efficiency. Consequently, both hydrogen bonding and filler entanglements contributed to the improved mechanical properties of ENR/t-CNCs nanocomposites.  相似文献   

17.
Prevulcanized natural rubber latex/clay aerogel nanocomposites   总被引:2,自引:0,他引:2  
Natural rubber latex (NR)/clay aerogel nanocomposites were produced via freeze-drying technique. The pristine clay (sodium montmorillonite) was introduced in 1-3 parts per hundred rubber (phr) in order to study the effect of clay in the NR matrix. The dispersion of the layered clay and the morphology of the nanocomposites were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Cure characteristics, thermal stability, and the crosslink density of thermal and microwave-cured NR and its composites were investigated. XRD patterns indicated that both intercalated and exfoliated structures were observed at loadings of 1-3 phr clay. SEM studies revealed that the clay aerogel structure was formed at 3 phr clay loading. The increment in Shore A hardness of nanocomposites compared with pure NR signified excellent polymer/filler interaction and the reinforcing effect of the clay to rubber matrix. This was supported by an increase in maximum rheometric torque and crosslink density. The crosslink density of clay-filled NR vulcanizate was found to increase with the pristine clay content in both thermal and microwave curing methods. However, microwave-cured 2 and 3 phr-filled NR vulcanizates exhibited higher crosslink density than those which were thermal-cured under the same curing temperature. In addition, thermal stability studies showed that pristine clay accelerated the decomposition of NR by showing a slight decrease in onset and peak decomposition temperatures along with clay content.  相似文献   

18.
The results of recent research indicate that the introduction of layered silicate - montmorillonite - into polymer matrix results in increase of thermal stability of a number of polymer nanocomposites. Due to characteristic structure of layers in polymer matrix and nanoscopic dimensions of filler particles, several effects have been observed that can explain the changes in thermal properties. The level of surface activity may be directly influenced by the mechanical interfacial adhesion or thermal stability of organic compound used to modify montmorillonite. Thus, increasing the thermal stability of montmorillonite and resultant nanocomposites is one of the key points in the successful technical application of polymer-clay nanocomposites on the industrial scale. Basing on most recent research, this work presents a detailed examination of factors influencing thermal stability, including the role of chemical constitution of organic modifier, composition and structure of nanocomposites, and mechanisms of improvement of thermal stability in polymer/montmorillonite nanocomposites.  相似文献   

19.
In this report, we demonstrate that both the thermal stability and the thermal conductivity of bromobutyl rubber (BIIR) nanocomposites could be improved by incorporating the ionic liquids (ILs) modified graphene oxide (GO-ILs) using a solution compounding method. The structure, thermal stability and thermal conductivity of this newly modified BIIR nanocomposites were systematically analyzed and studied. The X-ray diffraction (XRD) analysis of GO-ILs showed that ILs had been effectively intercalated into the interlayer of GO, which was found to be able to raise the exfoliation degree of GO. The increased exfoliation degree facilitated a good dispersion of GO-ILs in the BIIR matrix, as revealed by the scanning electron microscope (SEM) images. The glass transition temperatures (Tg) of the GO-ILs/BIIR nanocomposites were also raised by the addition of GO-ILs, which indicates the strong interfacial adhesion between GO-ILs and the rubber. Most importantly, the incorporation of GO-ILs in the BIIR matrix could effectively improve the thermal stability of the rubber nanocomposites according to our thermogravimetric analysis (TGA). The activation energy (Ea) of thermal decomposition of GO-ILs/BIIR nanocomposites increases with the addition of GO-ILs. Besides, the thermal conductivity of GO-ILs/BIIR nanocomposite with 4 wt% of GO-ILs had 1.3-fold improvement compared to that of unfilled BIIR.  相似文献   

20.
The thermal properties and combustion behaviour of new PE–hydrotalcites nanocomposites are described. Hydrotalcites were synthesized and then intercalated with stearate anion, because of the compatibility of long alkyl chain with polyethylene chains. The presence of inorganic filler shields PE from thermal oxidation, shifting the temperature range of volatilisation towards that of thermal degradation in nitrogen, and brings to a reduction of 55% in heat release rate during combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号