首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Density functional theory (DFT) and time-dependent DFT calculations were carried out to comparatively describe the molecular structures, molecular orbital energy gaps, atomic charges, infrared (IR) and Raman spectra, and UV-vis spectra of PbPc (1), PbPc(alpha-OC2H5)4 (2), and PbPc(alpha-OC5H11)4 (3) {Pc2- = dianion of phthalocyanine; [Pc(alpha-OC2H5)4]2- = dianion of 1,8,15,22-tetra-ethoxyphthalocyanine; [Pc(alpha-OC5H11)4]2- = dianion of 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine}. The calculated structural data of compounds 1 and 3 and the simulated IR and UV-vis spectra of 3 are compared with X-ray crystallography molecular structures and the experimental absorption spectra respectively to verify the performance of the B3LYP method and the LANL2DZ basis set. Substitution of bulky alkoxy groups at the nonperipheral positions of the phthalocyanine ring adds obvious effect to the molecular structure of phthalocyaninato lead compounds by deflecting the isoindole units in the direction that the isoindole units extends and distorting them in the C4 axis direction due to the steric hindrance. Both the calculated IR and UV-vis absorption spectra of 3 correspond well with the experimental results.  相似文献   

2.
Density functional theory (DFT) calculations were carried out to describe the molecular structures, molecular orbitals, atomic charges, UV-vis absorption spectra, IR, and Raman spectra of bis(phthalocyaninato) rare earth(III) complexes M(Pc)(2) (M = Y, La) as well as their reduced products [M(Pc)(2)](-) (M = Y, La). Good consistency was found between the calculated results and experimental data. Reduction of the neutral M(Pc)(2) to [M(Pc)(2)]- induces the reorganization of their orbitals and charge distribution and decreases the inter-ring interaction. With the increase of ionic size from Y to La, the inter-ring distance of both the neutral and reduced double-decker complexes M(Pc)(2) and [M(Pc)(2)](-) (M = Y, La) increases, the inter-ring interaction and splitting of the Q bands decrease, and corresponding bands in the IR and Raman spectra show a red shift. The orbital energy level and orbital nature of the frontier orbitals are also described and explained in terms of atomic character. The present work, representing the first systemic DFT study on the bis(phthalocyaninato) yttrium and lanthanum complexes sheds further light on clearly understanding structure and spectroscopic properties of bis(phthalocyaninato) rare earth complexes.  相似文献   

3.
A series of metal naphthalocyanine complexes (M = TiO2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Ru2+) have been investigated using density functional theory (DFT) and time-dependent DFT methods in vacuo and in the solvent dimethylsulfoxide in order to evaluate the influence of the different metal atoms on the geometries and optical properties of their complexes. The optimized geometries for the complexes without an axial ligand exhibit planar conformations. Most of the absorption bands of the metal complexes are blue-shifted compared to those of the metal-free naphthalocyanine, both in vacuo and in the solvent. The various transition metals could gradually tune the electronic and spectroscopic properties of their naphthalocyanine complexes, which may provide valuable information for tuning the properties of naphthalocyanine complexes for various applications.  相似文献   

4.
The structures and electronic absorption spectra of newly synthesized heteroleptic copper (I) complexes [CuL1L2]+ (L1 = phen-imidazole and/or L2 = dipyrido [3,2-a:2’,3’-c] phenazine derivatives) are analyzed under the light of density functional theory (DFT) and time-dependent DFT (TD-DFT). The ground states geometries, characterized by π-stacking interactions, have been optimized using PBE-D functional taking into account dispersion correction. The UV-visible theoretical absorption spectra have been calculated using B3LYP functional in vacuum and taking into account solvent corrections by means of the polarized continuum model (PCM). Whereas the PBE-D functional is well adapted to the determination of the structures, it does underestimate drastically the transition energies. The spectra are characterized by high density of states, mainly metal-to-ligand-charge-transfer (MLCT) and intra-ligand (IL), between 600 nm and 250 nm. Most of the complexes show an intense band in the near-UV energy domain (~320 nm) corresponding to an IL transition. The lowest part of the absorption spectra, starting at 600 nm, corresponds to MLCT transitions leading to a shoulder observed experimentally between 400 and 500 nm. The upper part of the spectra, beyond 300 nm, puts in evidence strong mixing between ligand-to-ligand-charge-transfer (LLCT), IL and MLCT states.  相似文献   

5.
The molecular structures and vibrational spectra in harmonic and anharmonic approximations have been studied for selenoxopropanedinitrile and selenoxosilanedicarbonitrile in the gas phase. Density functional theory method with B3LYP functional and cc‐pVTZ basis set has been employed. Optimized structural parameters and spectroscopic constants, namely, anharmonic, rotational and centrifugal distortion, rotation–vibration coupling, and Coriolis coupling parameters, are reported. Infrared vibrational and Raman frequencies are provided with complete assignments to the fundamental bands, overtones, and combination tones of the molecules. This study shows that silicon for carbon substitution affects mainly those properties that are dependent on the CSe bond. The literature for these molecules is not available and therefore the data from this work would be suitable for their characterizations as and when they are synthesized. © 2009 Wiley Periodicals, Inc. Heteroatom Chem 20:208–217, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20535  相似文献   

6.
Porphyrin and pincer complexes are both important categories of compounds in biological and catalytic systems. The idea to combine them is computationally investigated in this work. By employment of density functional theory (DFT), conceptual DFT, and time-dependent DFT approaches, structure, spectroscopy, and reactivity properties of porphyrin pincers are systematically studied for a selection of divalent metal ions. We found that the porphyrin pincers are structurally and spectroscopically different from their precursors and are more reactive in electrophilic and nucleophilic reactions. A few quantitative linear/exponential relationships have been discovered between bonding interactions, charge distributions, and DFT chemical reactivity indices. These results are implicative in chemical modification of hemoproteins and understanding chemical reactivity in heme-containing and other biologically important complexes and cofactors.  相似文献   

7.
Odd-even effects of short-circuit current density and power conversion efficiency (PCE) are an interesting phenomenon in some organic solar cells. Although some explanations have been given, why they behave in such a way is still an open question. In the present work, we investigate a set of acceptor-donor-acceptor simple oligomer-like small molecules, named the DRCNnT (n = 5-9) series, to give an insight into this phenomenon because the solar cells based on them have high PCE (up to 10.08%) and show strong odd-even effects in experiments. By modeling the DRCNnT series and using density functional theory, we have studied the ground-state electronic structures of the DRCNnT (n = 5-9) series in condensed phase. The calculated results reproduce the experimental trends well. Furthermore, we find that the exciton-binding energies of the DRCNnT series may be one of the key parameters to explain this phenomenon because they also show odd-even effects. In addition, by studying the effects of alkyl branch and terminal group on odd-even effects of dipole moment, we find that eliminating one or two alkyl branches does not break the odd-even effects of dipole moments, but eliminating one or two terminal groups does. Finally, we conclude that removing one alkyl branch close to the terminal group of DRCN5T can decrease highest occupied molecular orbital (HOMO) energy (thus increasing open circuit voltage) and increase dipole moment (thus enhancing charge separation and short-circuit current). This could be a new and simple method to increase the PCE of DRCN5T-based solar cells.  相似文献   

8.
Resveratrol is a polyphenolic compound found in plants and human foods which has shown biological activities including chemoprevention, acting through a mechanism which involves the reduction of Cu(II) species. By electrospray ionization (ESI) mass spectrometry we have produced and detected the resveratrol-copper complexes [Resv+Cu](+), [Resv+Cu+H(2)O](+) and [2Resv+Cu](+) by using a resveratrol/CuSO(4) solution in CH(3)CN/H(2)O. The most stable structures of the detected complexes have been calculated at the B3LYP/6-311G(d) level of theory. Resveratrol interacts with the copper ion through nucleophilic carbon atoms on the aromatic ring and the alkenyl group. The fact that only singly charged ions were observed implies that Cu(II) is reduced to Cu(I) in the ESI process. For investigating the structure-reactivity correlation, we have carried out a similar study on the synthetic analogue dihydroresveratrol (DHResv). For the latter only the [DHResv+Cu](+) complex has been detected.  相似文献   

9.
Three stannaborate complexes of platinum(II) and a novel stannoborate palladium(II) derivative have been prepared in excellent yield. The tin transition metal bond is formed through nucleophilic substitution and the resulting complexes [Bu3MeN] [trans-[(Et3P)2Pt(SnB11H11)H]] (6), [trans-[(Et3P)2Pt(SnB11H11)(CNtBu)]] (7), [Bu3MeN]2[trans-[(Et3P)2Pt(SnB11H11)2-(CNtBu)]] (8), and [Bu3MeN][(dppe)-Pd(SnB11H11)Me] (12) (dppe = 1,2-bis-(diphenylphosphanyl)ethane) were characterized by NMR spectroscopy and elemental analysis. In the cases of the zwitterion 7, the pentacoordinated complex 9, the palladium salt 12 and [(triphos)Pt(SnB11H11)] (10) (triphos = 1,1,1-tris(diphenylphosphanylmethyl)ethane), their solid-state structures are determined by X-ray crystal structure analyses. The trans influence of the [SnB11H11] ligand is evaluated from the results of the IR spectroscopy and X-ray crystallographic structures of complexes 6, 7, and 12. The dipole moment of the zwitterion 7 is calculated by density functional theory (DFT) methods. The alignment of the dipole moments of the polar molecules 7 and 12 in the solid state is discussed.  相似文献   

10.
Density functional theory (DFT) calculations have been carried out in order to compare the molecular structures, atomic charges, molecular orbitals, electronic absorption spectra, and infrared (IR) spectra of the metal-free 5,15 -di[4-(5-acetylsulfanylpentyloxy) phenyl]porphyrin H2[DPP(OC5H10SCOCH3)2] (1) (DPP = 5,15-diphenylporphyrin) and its zinc complex Zn[DPP(OC5H10SCOCH3)2] (2), which exhibit novel structures with two 5-acetylsulfanylpentyloxy side chains at the para-positions of opposite meso-attached phenyl groups. The calculated molecular structure and electronic absorption and IR spectra of 1 and 2 are consistent with the experimental results. The influences of meso-substitution, polar solvents, and central metal substitution on the structure and properties of porphyrin derivatives have been investigated by comparing the corresponding data for 1 and 2 with the help of data for the unsubstituted porphyrin derivatives, namely the metal-free porphyrin H2Por (3) and the porphyrinato-zinc compound (4). The identities of the main transitions in the electronic absorption spectra of 1 and 2 are assigned and the vibrational modes in their IR spectra are identified with the assistance of animated pictures produced based on normal coordinates. The theoretical work presented here will be helpful in increasing our understanding of the structure and spectroscopic properties, as well as substituent and solvent effects, for these novel porphyrin compounds.  相似文献   

11.
FT Raman and IR spectra of the crystallized biologically active molecule, L-alanylglycine (L-Ala-Gly) have been recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational frequencies of L-Ala-Gly have been investigated with the help of B3LYP density functional theory (DFT) method. The calculated molecular geometry has been compared with the experimental data. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFF). The optimized geometry shows the non-planarity of the peptide group of the molecule. Potential energy surface (PES) scan studies has also been carried out by ab initio calculations with B3LYP/6-311+G** basis set. The red shifting of NH3+ stretching wavenumber indicates the formation of N-H...O hydrogen bonding. The change in electron density (ED) in the sigma* antibonding orbitals and E2 energies have been calculated by natural bond orbital analysis (NBO) using DFT method. The NBO analysis confirms the occurrence of strong intermolecular hydrogen bonding in the molecule.  相似文献   

12.
The solid phase mid FTIR and FT Raman spectra of 2-naphthoic acid (NA) and 6-bromo-2-naphthoic acid (BNA) have been recorded in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The fundamental vibrational frequencies and intensities of the vibrational bands were evaluated using density functional theory (DFT) using standard B3LYP method and 6-311+G** basis set combinations. The vibrational spectra were interpreted, with the aid of normal coordinate analysis based on a scaled quantum mechanical force field. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes.  相似文献   

13.
The mid and far FTIR and Raman spectra were measured in the liquid state. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT) and standard B3LYP/6-311+G** basis set combination. The vibrational spectra were interpreted, with the aid of normal coordinate analysis based on a scaled quantum mechanical (SQM) force field. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes. Unambiguous vibrational assignment of all the fundamentals was made using the total energy distribution (TED).  相似文献   

14.
The molecular structures of the ground state and the first singlet excited state for diphenylboron analogs of Alq3 [Ph2Bq where q is 8-hydroxyquinoline (QH)] and its three derivatives were optimized with the Density Functional Theory and ab initio “configuration interaction with single excitations” method, respectively. The frontier molecular orbital characteristics of Ph2Bq were analyzed systematically in order to study the electronic transition mechanism. Electronic and spectroscopic properties of complexes have been investigated with Time-Dependent Density Functional Theory, which indicates that the emissions of Ph2Bq and its derivatives originate from the electronic π → π* transitions within the QH ligands. That means that one might tune the emission wavelengths and improve charge transfer properties through the effect of substituent on the 8-hydroxyquinoline ligand. Similar calculations were carried out for isolated QH and its three derivatives for comparison. We found that the highest occupied molecular orbital and the lowest unoccupied molecular orbital of Ph2Bq are similar to those of QH and their spectroscopic properties change similarly when they are substituted by the same group, which suggests that one can search possibility of a red or blue emission from Ph2Bq derivatives by analyzing QH and its derivatives.  相似文献   

15.
Manganese polysulfide cations, MnS(x)(+) (x = 1-10), were studied with mass-selected photodissociation experiments and density functional calculations. We found that MnS(+), MnS(2)(+) and MnS(3)(+) undergo dissociation at 355 nm by loss of S, S(2) and S(3), respectively. The dissociation of larger clusters is relatively complex because of the existence of multiple isomers and multiple dissociation channels. The geometric structures of the low-lying isomers found by theoretical calculations are consistent with the dissociation channels observed in the experiments. The dissociation of MnS(x)(+) clusters occurs mainly by breaking of the Mn-S bonds since they are weaker than the S-S bonds.  相似文献   

16.
A new partially halogenated ether (ClCF2CF(CF3)OCF2CH3) has been synthesized and characterized using DSC, GC, 1H and 19F NMR, IR. The experimental infrared spectra of this “flexible” molecule have been successfully interpreted on the basis of reliable Density Functional Theory calculations. An efficient method useful for the identification of the many stable conformers has been developed and applied. Infrared spectra of the stable conformers have been simulated after full geometry optimization. The results obtained allow detection of conformation-sensitive bands, making possible the interpretation of fine details in the spectra.  相似文献   

17.
CO oxidation on Ru(0001), Rh(111), Pd(111), Os(0001), Ir(111), Pt(111), and their corresponding metal oxides is studied using density functional theory. It is found that (i) the reactivity of metal oxide is generally higher than that of the corresponding metal, and (ii) on both metals and metal oxides, the higher the chemisorption energy is in the initial state, the larger the reaction barrier. The barriers are further analyzed by decomposing them into electronic and geometric effects, and the higher reactivity of metal oxides is attributed mainly to the surface geometric effect. Moreover, the electronic effect on both metals and metal oxides follows the same pattern: the shorter the OC-O bond distance in the TS, the higher the barrier.  相似文献   

18.
Basak S  Rajak KK 《Inorganic chemistry》2008,47(19):8813-8822
The oxorhenium(V) complexes [Re (V)O(L A)Cl 2] bearing the (N-2-pyridylmethyl) of l-valine (HL A (1)), l-leucine (HL A (2)), and l-phenylalanine (HL A (3)) and [Re (V)O(L B)Cl] containing the {(N-2pyridylmethyl)-(N-(5-nitro-2-hydroxybenzyl)} of l-valine (H 2L B (1)), l-leucine (H 2L B (2)), and l-phenylalanine (H 2L B (3)) are presented in this article. The complexes are isolated in enantiomeric pure form examined from X-ray structure determination. The complexes are characterized by spectroscopic and electrochemical methods. The molecular structures observed in the solid state are grossly preserved in solution ( (1)H, (13)C, and circular dichroism spectra). Gas-phase geometry optimization and the electronic structures of [Re (V)O(L A (1))Cl 2], [Re (V)O(L A (2))Cl 2], and [Re (V)O(L B (2))Cl] have been investigated with the framework of density functional theory. The absorption and circular dichroism spectra of the complexes were also calculated applying time-dependent density functional theory (TDDFT) using the conductor-like polarizable continuum solvent model to understand the origin of the electronic excitations. The chemical shift ( (1)H and (13)C) as well as (1)H- (1)H spin-spin coupling constant were also computed by the gauge-independent atomic orbital method, and the computed values are consistent with the experimental data.  相似文献   

19.
The structural, energetic, and electronic properties of the Li/graphite system are studied through density functional theory (DFT) calculations using both the local spin density approximation (LSDA), and the gradient-corrected Perdew-Burke-Ernzerhof (PBE) approximation to the exchange-correlation energy. The calculations were performed using plane waves basis, and the electron-core interactions are described using pseudopotentials. We consider a disperse phase of the adsorbate comprising one Li atom for each 16 graphite surface cells, in a slab geometry. The close contact between the Li nucleus and the graphene plane results in a relatively large binding energy (larger than 1.1 eV). A detailed analysis of the electronic charge distribution, density difference distribution, and band structures indicates that one valence electron is entirely transferred from the atom to the surface, which gives rise to a strong interaction between the resulting lithium ion and the cloud of pi electrons in the substrate. We show that it is possible to explain the differences in the binding of Li, Na, and K adatoms on graphite considering the properties of the corresponding cation/aromatic complexes.  相似文献   

20.
FT-IR and FT-Raman spectra of 2-hydroxy-3-methoxy-5-nitrobenzaldehyde (HMN) and 2-methoxy-1-naphthaldehyde (MN) have been recorded in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The molecular structure, conformational stability, geometry optimization, vibrational frequencies have been investigated. The total energy calculations of HMN and MN were tried for various possible conformers. The spectra were interpreted with the aid of normal coordinate analysis based on density functional theory (DFT) using B3LYP/6-31G* and B3LYP/6-311+G** level and basis set combinations and was scaled using various scale factors yielding good agreement between observed and calculated frequencies. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of the simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号