首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of silver(I) with isocyclam, scorpiand,trans-Me2[14]anN4, cis-Me6[14]anN4,(N-Me)Me2py[14]anN4 and py[12]anN4 were investigated.The stability constant of the Ag(I) complex with py[12]anN4 was determined. The aqueous solutions of the silver(II) complexes with the 14-membered ligands were obtained, and characterized by means of UV-VIS and CVA measurements. The Ag2+ ion does not form a five-coordinate complex with scorpiand. The formal potentials of the Ag(II)/Ag(I) system in the presence of scorpiand, trans-Me2[14]anN4, cis-Me6[14]anN4 and(N-Me)Me2py[14]anN4 were determined. The mechanism is also proposedfor the electroreduction of the silver(II) complexes with these compounds on a platinum electrode in aqueous solution.  相似文献   

2.
用分层法合成了两个配合物[Ag2(L)2](CF3COO)2(1)和[Ag2(L)2](CF3SO3)2(2)[L=2-甲基-4,6-二(3-吡啶基)嘧啶],并用元素分析、红外光谱、X-射线单晶衍射等手段对其进行了表征。晶体结构分析结果表明:具有双核大环结构的配合物1和2由Ag(Ⅰ)…Ag(Ⅰ)相互作用连接形成一维链状结构,并进一步通过π-π相互作用形成二维层状结构。研究了配合物2的荧光性质。  相似文献   

3.
Three silver(I) dipeptide complexes [Ag(GlyGly)]n(NO3)n (AgGlyGly), [Ag2(GlyAla)(NO3)2]n (AgGlyAla) and [Ag2(HGlyAsp)(NO3)]n (AgGlyAsp) were prepared, investigated and characterized by vibrational spectroscopy (mid-IR), elemental and thermogravimetric analysis and mass spectrometry. For AgGlyGly, X-ray crystallography was also performed. Their stability in biological testing media was verified by time-dependent NMR measurements. Their in vitro antimicrobial activity was evaluated against selected pathogenic microorganisms. Moreover, the influence of silver(I) dipeptide complexes on microbial film formation was described. Further, the cytotoxicity of the complexes against selected cancer cells (BLM, MDA-MB-231, HeLa, HCT116, MCF-7 and Jurkat) and fibroblasts (BJ-5ta) using a colorimetric MTS assay was tested, and the selectivity index (SI) was identified. The mechanism of action of Ag(I) dipeptide complexes was elucidated and discussed by the study in terms of their binding affinity toward the CT DNA, the ability to cleave the DNA and the ability to influence numbers of cells within each cell cycle phase. The new silver(I) dipeptide complexes are able to bind into DNA by noncovalent interaction, and the topoisomerase I inhibition study showed that the studied complexes inhibit its activity at a concentration of 15 μM.  相似文献   

4.
A series of NHC-based selenourea Ag(I) and Au(I) complexes were evaluated for their anticancer potential in vitro, on 2D and 3D human cancer cell systems. All NHC-based selenourea complexes possess an outstanding cytotoxic potency, which was comparable or even better than that of the reference metallodrug auranofin, and were also able to overcome both platinum-based and multi-drug resistances. Intriguingly, their cytotoxic potency did not correlate with solution stability, partition coefficient or cellular uptake. On the other hand, mechanistic studies in cancer cells revealed their ability to strongly and selectively inhibit the redox-regulating enzyme Thioredoxin Reductase (TrxR), being even more effective than auranofin, a well-known TrxR inhibitor, without affecting other redox enzymes such as Glutathione Reductase (GR). The inhibition of TrxR in H157 human cancer cells caused, in turn, the disruption of cellular thiol-redox homeostasis and of mitochondria pathophysiology, ultimately leading to cancer cell death through apoptosis.  相似文献   

5.
Assembly of three-connecting ligands 1,3,5-tris(1-imidazolyl)benzene (tib) and 1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene (titmb) with cadmium(II) and silver(I) salts provide new metal-organic frameworks, [Cd(tib)2](NO3)2·4H2O (1), [Ag(tib)(PPh3)](CF3SO3) (2) and [Ag(titmb)(PPh3)](CF3SO3)·1.5H2O (3) (PPh3=triphenylphosphine). Single-crystal X-ray diffraction studies reveal that complexes 1 and 3 are two-dimensional honeycomb networks, while complex 2 is a noninterpenetrated three-dimensional architecture with (10,3)-a topology. The results indicate that the nature (structure and flexibility) of the organic ligands and the bulky auxiliary ligand have great impact on the assembly and structure of metal-organic frameworks. The photoluminescent properties of the synthesized complexes were studied in the solid state at room temperature.  相似文献   

6.
A series of neutral mixed-ligand [HB(pz)3]Ag(PR3) silver(I) complexes (PR3 = tertiary phosphine, [HB(pz)3] = tris(pyrazolyl)borate anion), and the corresponding homoleptic [Ag(PR3)4]BF4 compounds have been synthesized and fully characterized. Silver compounds were screened for their antiproliferative activities against a wide panel of human cancer cells derived from solid tumors and endowed with different platinum drug sensitivity. Mixed-ligand complexes were generally more effective than the corresponding homoleptic derivatives, but the most active compounds were [HB(pz)3]Ag(PPh3) (5) and [Ag(PPh3)4]BF4 (10), both comprising the lipophilic PPh3 phosphine ligand. Detailed mechanistic studies revealed that both homoleptic and heteroleptic silver complexes strongly and selectively inhibit the selenoenzyme thioredoxin reductase both as isolated enzyme and in human ovarian cancer cells (half inhibition concentration values in the nanomolar range) causing the disruption of cellular thiol-redox homeostasis, and leading to apoptotic cell death. Moreover, for heteroleptic Ag(I) derivatives, an additional ability to damage nuclear DNA has been detected. These results confirm the importance of the type of silver ion coordinating ligands in affecting the biological behavior of the overall corresponding silver complexes, besides in terms of hydrophilic–lipophilic balance, also in terms of biological mechanism of action, such as interaction with DNA and/or thioredoxin reductase.  相似文献   

7.
Starting from proligand 1-methyl-2-(phenyl)imidazo[1,5-a]pyridine-2-iumchloride ( 1 .HCl), 1-methyl-2-(phenyl)imidazo[1,5-a]pyridine silver(I)chloride, ( 2 ) has been prepared. Synthesis, structures and photophysical properties of (2,2/−bipyridyl)-1-methyl-2-(phenyl)imidazo[1,5-a]pyridinesilver(I)hexaflurophosphate, ( 3 ), 1-methyl-2-(phenyl)imidazo[1,5-a]pyridinesilver(I)carbazolate, ( 4 ) and 1-methyl-2-(phenyl)imidazo[1,5-a]pyridinegold(I)carbazolate, ( 5 ) are focused. Herein we have first reported the NHC-Ag-(bpy/carbazole). All the complexes have been characterized by elemental analysis, various spectroscopic studies and finally screened for luminescent properties. All the complexes are strongly emissive. Solid state structures of 2 , 3 , 4 and 5 have been determined by X-ray diffraction studies. Conventionally, complex 2 adopts linear geometry whereas complex 3 embraces triangular planar geometry around Ag; complex 4 and 5 clinches linear geometry around Ag/Au. All the complexes absorb light within 275–343 nm. Complex 3 is luminous at ~407 mn, whereas complex 4 and 5 luminous at ~360 nm having short life time 1.00–6.97 ns. The quantum yield (Φem) of the complexes varies 0.106–0.186. It is expected variation of luminescence arises due to change of metal and the chromophore (bpy/carbazole). Density Functional Theory (DFT) and Temparature Dependent Density Functional Theory (TDDFT) calculations were performed to verify crystallographically derived parameters and to calculate the UV–Vis properties of the ground state as well as of the first excited state of the complexes.  相似文献   

8.
1 INTRODUCTION Metallosupramolecular species with metal-metal interactions have been designed and synthesized due to their potential applications as functional materi- als[1]. For Ag(I) coordination compounds, short Ag(I) –Ag(I) separations have been found in many bi- and polynuclear complexes[2~4], and these short metal- metal distances have been attributed to the ligand ar- chitecture[5, 6]. Thus, the rational design of bi- and polynuclear Ag(I) complexes must recognize the in- here…  相似文献   

9.
The S2O2-donor macrocycle, L(5,8-dioxa-2,11-dithia-[12]-o-cyclophane or 3,4-benzo-1,6-dithia-9,12-dioxocyclo-tetradecane-3-ene) was synthesized by ring closure reaction of 2,2'-(ethylenedioxy)diethanethiol with ,'-dibromo-o-xyleneunder high dilution and crystallized from methanol. The X-ray structure of L has a C2 axis and is shown to have two S atoms oriented exodentate and two O atoms positionedendodentate to the ring cavity. Reaction of AgNO3 with L affords monomeric [Ag(L)(NO3)], (1)in which the Ag atom is in a distorted trigonal plane coordinated by two S atoms in a ring and to one O atom from the NO3 - ion. The behavior of complex 1 in solution was also characterized by NMR titration. Reaction between K2PtCl4 and L affords [Pt(L)Cl2], (2) in which the Pt atom has a distorted square-planar environment, coordinated to two S atoms of Land to two Cl- ions in a cis arrangement.  相似文献   

10.
IntroductionDinuclearcomplexesofsilver(I)havebeenexten sivelystudied ,1owingtotheirimportanceascatalystsandtransferreagents.2 AromaticN heterocycleshavebeenprovedtobesuitableligandsincoordinationchemistry .3Thetriazolederivatives ,forinstance ,havebeenwidely…  相似文献   

11.
The processes of thermal decomposition of silver(I) and mercury(I) anthranilates and salicyloaldoximates were studied. Thermal, chemical and X-ray analyses and infrared spectroscopy were used to determine the mechanisms of decomposition of these complexes. The factor determining the decomposition is the character of the Ag+ and Hg 2 2+ ions, which are easily reduced to free metals. The final reaction product of the compounds of silver is the pure metal; the compounds of mercury are volatilized completely when heated.  相似文献   

12.
Two silver(I) complexes were prepared by the reaction of [Ag(C(CPh)]n with NP3 [NP3 = N(CH2CH2PPh2)3] or with NP3 and [Cu(CH3CN)4]ClO4. Complex 1 [(Ag2Cl(NP3)2)(Ag5(C(CPh)6)] contains both NP3 and PhC(C- ligands. The complex cation is (Ag2Cl(NP3)2)+, in which two Ag(NP3)+ cations were bridged by a Cl- donor. The anion is (Ag5(C(CPh)6)-, where five Ag+ ions are linked by six C(CPh- to form a pentanuclear cluster. Complex 2 only contains NP3 ligand, where the silver center adopts a trigonal-bipyramidal geometry. Crystal data for 1: C133H116Ag7Cl3N2P6, Mr = 2789.54, triclinic, space group P, a = 13.0780(2), b = 15.3678(2), c = 31.2041(3) (A), α = 91.3928(7), β = 90.9328(8), γ = 96.0244(4)o, V = 6233.8(1) (A)3, T = 293(2) K, Z = 2, Dc = 1.486 g/cm3, F(000) = 2796, μ = 1.266 mm-1, the final R = 0.0746 and wR = 0.1953 for 16475 observed reflections with I > 2σ(I). Crystal data for 2: C42H42AgClNO4P3, Mr = 861.00, trigonal, space group R3, a = 17.451(1), b = 17.451(1), c = 11.3985(7) (A), V = 3006.0(3) (A)3, T = 293(2) K, Z = 3, Dc = 1.427 g/cm3, F(000) = 1326, μ = 0.731 mm-1, the final R = 0.0251 and wR = 0.0663 for 1499 observed reflections with I > 2σ(I).  相似文献   

13.
1 INTRODUCTION Niflumic acid (2-[3-(trifluoromethyl) phenyl] amino nicotinic acid, HNifa) is an organic fluoro compound used in the preparation of ‘Donalgin’ as the active substance. In medicine, HNifa has been widely used as a non-steroidal anti-inflammatory analgetic drug[1]. The extensive application of this preparation in medical practice has attracted much interest in other various biological fields such as the determination in serum, urine[2~4], and coordination behaviors with …  相似文献   

14.

Silver(I) complexes of selenones, [LAgNO3] and [AgL2]NO3 (where L is imidazolidine-2-selenone or diazinane-2-selenone and their derivatives) have been prepared and characterized by elemental analysis, IR and NMR (1H, 13C and 107Ag) spectroscopy. An upfield shift in the C=Se resonance of selenones in 13C NMR and a downfield shift in N-H resonance in 1H NMR are consistent with selenium coordination to silver(I). In 107Ag NMR, the AgNO3signal is deshielded by 450-650 ppm on coordination to selenones. Greater upfield shifts in 13C NMR were observed for [LAgNO3] compared to [AgL2]NO3complexes, whereas the opposite trend was observed for 1H and107Ag NMR chemical shifts.  相似文献   

15.
1 INTRODUCTION Great attention has currently been paid to com-pounds formed by the reaction between phosphineand metal alkynyl building blocks[1]. The ligand NP3contains one tertiary nitrogen atom as well as threephosphorous atoms and bonds to the metal ions as atetradentate ligand, affording tetrahedral[2] or triangle-bipyrimidal geometry[3, . In other coordination ca- 4]ses, one[5, , two[7], three P donors[8, 6] …  相似文献   

16.
Dinuclear silver (I) six‐membered ring complex [Ag2 (bta)2 ‐(hmbta)2] (ClO4)2 (3) has been synthesized by the reaction of benzotriazole (bta) (1) and 1‐hydroxymethyl benzotriazole (hmbta) (2) with Ag (CH3CN)4ClO4. The structures of compound 2 and Complex 3 have been studied by single crystal X‐ray diffraction analysis. The change of luminescent intensity of 1, 2 and 3 was reported. Compound 2 crystallizes in the monoclinic system with space group P2 (1)/c, a = 0.7655 (10) nm, b = 1.0126 (14) nm, c =0.9502 (13) nm, β = 95.07 (2)°, V = 0.7337 (17) nm3 and Z = 4. Complex 3 crystallizes in the triclinic system with space group P1, a = 0.73611 (18) nm, b = 0.9152 (2) nm, c = 1.2277 (3) nm, β = 87.170 (5)°, V = 0.8221 (3) nm3 and Z = 1. The main structural feature of complex 3 is a symmetric dinuclear six‐membered ring formed by two silver (I) atoms and four N‐atoms from two benzotriazoles. The second structural feature of complex 3 is the τ‐τ stacking interaction between two adjacent molecular planes, which forms the two‐dimentional layer structure. Besides, compared with 2, the luminescent intensity of complex 3 shows a remarkable enhancement.  相似文献   

17.
The title compound, {[Ag2(bipy)2(H2O)2]·pydc·2H2O}n (bipy=4,4'-bipyridine, pydc= pyridine-3,5-dicarboxylate), has been synthesized by the reaction of Ag2O with pydc and bipy in CH3OH solution. It crystallizes in the monoclinic system, space group C2/c with a=21.419(8), b=7.515(3), c=18.070(7), β=108.273(6)°, Mr=765.27, V=2761.9(17)3, Z=4, Dc=1.840 g/cm3, F(000)= 1528, μ=1.478 mm-1, the final R=0.0307 and wR=0.0681. The structure determined demonstrated that the Ag(I) is three-coordinated by two nitrogen atoms from bipy and one water molecule, forming a one-dimensional coordination polymer [Ag2(bipy)2(H2O)2]n2n+, which is further linked to generate a two-dimensional layer structure via Ag…Ag attractions.  相似文献   

18.
Self-assembly of Ag(I) nitrate, 1,3-bis(4-pyridyl)propane (bpp) and phthalic acid monopotassium salt (KHphth) in CH3OH-H2O solution produced the title complex, {[Ag(bpp)]2(Hphth)(NO3)·(H2O)2}n, which was characterized by single-crystal X-ray diffraction, elemental analysis, IR spectrum, and photoluminescent spectrum. Single-crystal X-ray analysis revealed that the complex crystallizes in a monoclinic system, space group P21/c, with a = 15.4174(5), b = 8.6398(2), c = 25.2466(8) , β = 91.072(1)o, V = 3362.34(17) 3, Z = 4, C34H37N5O9Ag2, Mr = 875.43, Dc = 1.729 g/cm3, μ = 1.228 mm-1, F(000) = 1768, the final R = 0.0749 and wR = 0.1580 for 5754 reflections with I > 2σ(I). The Ag atom is coordinated by two N atoms from two bpp molecules in an approximately linear geometry. The Ag(I) ions are linked by the bpp molecules to form one-dimensional zigzag chains propagating along the c axis. The Hphth- and nitrate counter-ions are bridged by solvent water molecules through hydrogen bonds to generate a one-dimensional chain extending along the b axis. Electrostatic interactions between cations and anions, extensive hydrogen bonds and π-π interactions are responsible for the three-dimensional supramolecular structure. In the solid state, the compound exhibits blue photoluminescence with the maximum at 436 nm upon excitation at 344 nm.  相似文献   

19.
In this paper we discuss the preparation and comparative evaluation of silver (I) [Ag(I)] nonwoven and woven antimicrobial barrier fabrics generated from commercial calcium‐sodium alginates and laboratory prepared sodium carboxymethyl (CM) cotton nonwovens and CM‐cotton printcloth for potential use as wound dressings. Degrees of CM substitution (DS) in cotton nonwoven and printcloth samples by titrimetry were 0.38 and 0.10, respectively. Coordination of Ag(I) with carboxylates on fabrics was effected by ion exchange and nitrates were removed by washing to mitigate nitrate ion toxicity issues. Durability of silver coordinated fabrics was tested by soaking them in deionized water with slight agitation at 50°C. Ag(I) alginates and nonwoven Ag(I)‐CM‐cottons lost structural integrity in water. Ag‐CM‐cotton printcloth samples retained structural integrity even after four soak‐and‐dry cycles, were smooth to the touch when dry, and were smoother when moistened. They could be easily peeled from wound surfaces without inducing trauma. Solid‐state carbon‐13 (13C) nuclear magnetic resonance (NMR) spectrometry was used to observe changes in carbonyl resonances in Ag(I) alginates and Ag(I)‐CM‐printcloth, and the chemical shift positions of carbonyl resonances of uncoordinated and Ag(I) coordinated fabrics did not change. Inductively coupled plasma‐mass spectrometry (ICP‐MS) was used following fabric digestion to determine the total Ag(I) ion content in fabrics. Ag(I) alginates were found to hold about 10–50 mg Ag(I) per gram fabric; and Ag(I) cotton woven and nonwoven fabrics held about 5–10 mg Ag(I) ions per gram fabric. Kinetic release of Ag(I) after soaking once in physiological saline was studied with ICP‐MS to estimate the availability of Ag(I) upon a single exchange with Na(I) ions on wound surfaces. Alginates released between ~13 and 28% of coordinated Ag(I), and CM‐cotton nonwovens and CM‐cotton printcloth released ~14 and 3% of coordinated Ag(I) ions, respectively. Finally, Ag(I) alginates and Ag(I)‐CM‐cotton printcloth samples were evaluated against Gram‐positive Staphylococcus aureus and Gram‐negative Klebsiella pneumoniae. Ag(I) alginates suppressed 99.95% of bacterial growth in vitro. Even after four soak‐and‐dry cycles in deionized water Ag(I)‐CM‐cotton printcloth suppressed 99.99% of bacterial growth in vitro. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

20.
1 INTRODUCTION The polyaza macrocyclic and macrobicyclic mo-lecules have been extensively studied due to theirinclusion ability for neutral molecules, coordinationability for metal cations and versatile roles in thefields of recognition, transformation…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号