首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supramolecular liquid-crystalline main-chain polymers have been obtained by self-assembly of non-mesomorphic bifunctional ligands and a transition metal ion. Stibazole dimers, bis[2-(2-{4-[2-(4-pyridyl)vinyl]phenoxy}ethoxy)ethyl] ether (1) and 1,2-bis[2-(2-{4-[2-(4-pyridyl)vinyl]phenoxy}ethoxy)ethoxy]benzene (2) have been synthesized and complexed with silver trifluoromethanesulfonate (CF3SO3Ag). The metallomesogenic polymeric complexes formed by coordination bonds between the pyridyl groups of the stilbazole dimers and the silver ion exhibit smectic phases.  相似文献   

2.
Metal-organic frameworks [M2(2-I-bdc)2bpe] (M = Zn(II) (1), Co(II) (2), 2-I-bdc = 2-iodoterephtalic acid, and bpe = 1,2-bis(4-pyridyl)ethane) were prepared and characterized by X-ray diffractometry. Both compounds retain their 3D structure after the removal of guest DMF molecules. Selectivity of sorption of different organic substrates from the gas phase was investigated for both complexes.  相似文献   

3.
Zn(II) complexes bearing tris[3-(2-pyridyl)-pyrazolyl] borate (Tppy) ligand (1–3) was synthesized and examined by spectroscopic and analytical tools. Mononuclear [TppyZnCl] (1) has a Zn(II) centre with one arm (pyrazolyl-pyridyl) dangling outside the coordination sphere which is a novel finding in TppyZn(II) chemistry. In complex [TppyZn(H2O)][BF4] (2) hydrogen bonding interaction of aqua moiety stabilizes the dangling arm. In addition, solution state behaviour of complex 1 confirms the tridentate binding mode and reactivity studies show the exogenous axial substituents used to form the [TppyZnN3] (3). The complexes (1–3) were tested for their ability to bind with Calf thymus (CT) DNA and Bovine serum albumin (BSA) wherein they revealed to exhibit good binding constant values with both the biomolecules in the order of 104–105 M−1. The intercalative binding mode with CT DNA was confirmed from the UV-Visible absorption, viscosity, and ethidium bromide (EB) DNA displacement studies. Further, the complexes were tested for in vitro cytotoxic ability on four triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, MDA-MB-468, HCC1937, and Hs 578T). All three complexes (1–3) exhibited good IC50 values (6.81 to 16.87 μM for 24 h as seen from the MTS assay) results which indicated that these complexes were found to be potential anticancer agents against the TNBC cells.  相似文献   

4.
We report the results of detailed experimental and theoretical studies on the molecular structure and vibrational spectra of metal(II) halide complexes of 1,3-bis(4-pyridyl)propane [M(N2C13H14)X2, where M represents Zn or Hg, and X represents Cl, Br, or I]. The FT–infrared spectra (FT-IR) and FT-Raman spectra of the metal complexes of the 1,3-bis(4-pyridyl)propane molecule in the powder form were recorded between the 400–4000 and 5–3500 cm?1 regions, respectively. The molecular geometry and vibrational frequencies of the metal complexes of 1,3-bis(4-pyridyl)propane in the ground state were calculated using density functional theory (B3LYP functional) with LANL2DZ and SDD as basis sets. The total energy distributions (TED) among the symmetry coordinates of the normal modes were computed for the low-energy structure of the molecules. Complete vibrational assignments based on the calculated TED values are given.  相似文献   

5.
Shin DM  Lee IS  Lee YA  Chung YK 《Inorganic chemistry》2003,42(9):2977-2982
The self-assembly of metallosupramolecules from reactions of flexible 2-pyridyl ligands and silver salts is described. When 1,3-bis(2-pyridyl)propane (L1), tris[(2-pyridyl)methyl]methane (L2), and 1,3-bis(2-pyridyl)-2-tolylpropane (L3) are used in combination with silver ions, novel discrete metallocyclic complexes are formed in crystals. Moreover, the self-assembly of 1,3-bis(2-pyridyl)-2-phenylpropane (L4) with silver nitrate yields a coordination polymer. The examination of its solution shows that this coordination polymer is formed via the solution-based discrete metallocyclic species.  相似文献   

6.
The condensation of pyrrole with 4-pyridylcarboxyaldehyde and methyl 4-formyl benzoate under Adler-Longo conditions yielded the series of meso-(4′-pyridyl)/(4′-carboxymethylphenyl)porphyrins as a mixture. Careful column chromatography afforded each isomer in pure form. In this paper we focus on the two bis-substituted isomeric meso-porphyrins, 5,10-bis(4′-pyridyl)-15,20-bis(4′-carboxymethylphenyl)porphyrin and 5,15-bis(4′-pyridyl)-10,20-bis(4′-carboxymethylphenyl)porphyrin, respectively, 4′-cis and 4′-transDPyDMeP. The assignment of the geometry of the two isomers was performed by 1H NMR spectroscopy on the trinuclear adducts [(4′-cisDPyDMeP){Ru(TPP)(CO)}2] and [(4′-transDPyDMeP){Ru(TPP)(CO)}2], obtained by selective coordination of [Ru(TPP)(CO)(EtOH)] (TPP=tetraphenylporphyrin) to the peripheral nitrogen atoms. The axially bound ruthenium porphyrins act as chemical shift reagents on the central porphyrin, allowing a clear distinction of the pyrrole proton resonances and consequent unambiguous assignment of the geometry of each isomer based upon symmetry considerations.  相似文献   

7.
The catalytic hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) and p-nitrophenyl phosphate (NPP) by metallomicelles composed of Cu(II) or Zn(II) complexes of bispyridine-containing alkanol ligands in CTAB micellar solution was investigated at 30 degrees C. The experimental results indicate that the complexes with a 1:1 ratio of ligands to metal ions for ligands 1 (1,7-bis(6-hydroxymethyl-2-pyridyl)-2,6-dioxaheptane) and 3 (1,4-bis[(6-hydroxymethyl-2-pyridyl)-2-oxapropyl]benzene) and a 1:2 ratio of ligands to metal ions for ligand 2 (1,14-bis(6-hydroxymethyl-2-pyridyl)-2,13-dioxatetradecane) in CATB micellar solution are the active species for the catalytic hydrolysis of BNPP and NPP, respectively. The ternary complex kinetic model for metallomicellar catalysis was employed to obtain the relative kinetic and thermodynamic parameters, which demonstrated the catalytic mechanism for the hydrolysis of BNPP and NPP by metallomicelles.  相似文献   

8.
Three zinc(II) nitrite coordination polymers, [Zn(4-bpdb)(NO2)2]n (1), {[Zn(3-bpdb)(NO2)]·0.5H2O}n (2) and [Zn(3-bpdh)(NO2)2]n (3), 4-bpdb = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene, 3-bpdb = 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene and 3-bpdh = 2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene} were prepared and characterized by elemental analyses and IR spectroscopy. Compound 3 was structurally characterized by single-crystal X-ray diffraction and is one-dimensional polymer with coordination environments of distorted octahedral, ZnN2O4. The thermal stabilities of compounds 1–3 were studied by thermal gravimetric (TG) and differential thermal analyses (DTA). Direct calcination of the compounds 1–3 at 600 °C under air atmospheres yields different morphologies of nano-sized ZnO.  相似文献   

9.
Ag-modified polyoxometalate [Na(H2O)]2[Ag(bpf)]3[PW12O40] (1) (bpf = 2,4-di(4-pyridyl)furan) was synthesized through a hydrothermal reaction. Single-crystal X-ray diffraction analysis revealed that 1 consists of a hybrid 3D MOF constructed from Keggin-type polyanionic [PW12O40]3- and cationic Ag-bpf units. Ligand bpf in 1 was in situ transferred from 1,3-bis(4-pyridyl)propane under the higher temperature and pressure of hydrothermal conditions. Catalytic performance of 1 as a heterogeneous catalyst for degradation of organic dye Rhodamine B (RhB) was investigated. Experimental results showed that hybrid 1 was especially active to catalytically degrade RhB under room temperature and natural light. RhB-containing solution (5.0 mg·L?1) could be quickly bleached in a short time, and the high removal efficiency (97%) could be reached in a mere 30 min. The degradation mechanism of RhB was discussed.  相似文献   

10.
Based on solvothermal synthesis, self-assembly of the heptadentate 2,6-diacetylpyridine bis(nicotinoylhydrazone) Schiff base ligand (H2L) and Zn(II) and/or Cd(II) salts has led to the formation of three homometallic [CdL]n (1), {[CdL]∙0.5dmf∙H2O}n (2) and {[ZnL]∙0.5dmf∙1.5H2O}n (3), as well as two heterometallic {[Zn0.75Cd1.25L2]∙dmf∙0.5H2O}n (4) and {[MnZnL2]∙dmf∙3H2O}n coordination polymers. Compound 1 represents a 1D chain, whereas 2–5 are isostructural and isomorphous two-dimensional structures. The entire series was characterized by IR spectroscopy, thermogravimetric analysis, single-crystal X-ray diffraction and emission measurements. 2D coordination polymers accommodate water and dmf molecules in their cage-shaped interlayer spaces, which are released when the samples are heated. Thus, three solvated crystals were degassed at two temperatures and their photoluminescent and adsorption–desorption properties were recorded in order to validate this assumption. Solvent-free samples reveal an increase in volume pore, adsorption specific surface area and photoluminescence with regard to synthesized crystals.  相似文献   

11.
Cordero MT  de Torres AG  Pavon JM 《Talanta》1993,40(5):691-695
The synthesis, physicochemical properties and interactions of two new thiocarbohydrazones, namely 1,5-bis[1-(2-pyridyl) ethylidene] thiocarbonohydrazide (APTH) and 1,5-bis[phenyl-(2-pyridyl) methylene] thiocarbonohydrazide (BPTH) have been studied as well as the use of both compounds as extracting reagents. These thiocarbohydrazones form yellow complexes with bivalent metal ions, and these are extractable into methyl isobutyl ketone. Conditions for quantitative extraction of Cd(II), Co(II), Cu(II), Ni(II) and Zn(II) are established from a critical study of the effect of pH, shaking time, reagent concentration in the organic phase, ionic strength and volume ratio of aqueous to organic phase.  相似文献   

12.
Six new homobimetallic and heterobimetallic complexes of rhenium(I) and ruthenium(II) bridged by ethynylene spacer [(CO)3(bpy)Re(BL)Re(bpy)(CO)3]2+ [Cl(bpy)2Ru(BL)Ru(bpy)2Cl]2+ and [(CO)3(bpy)Re(BL)Ru(bpy)2Cl]2+ (bpy = 2,2′-bipyridine, BL = 1,2-bis(4-pyridyl)acetylene (bpa) and 1,4-bis(4-pyridyl)butadiyne (bpb) are synthesized and characterized. The electrochemical and photophysical properties of all the complexes show a weak interaction between two metal centers in heterobimetallic complexes. The excited state lifetime of the complexes is increased upon introduction of ethynylene spacer and the transient spectra show that this is due to delocalization of electron in the bridging ligand. Also, intramolecular energy transfer from *Re(I) to Ru(II) in Re–Ru heterobimetallic complexes occurs with a rate constant 4 × 107 s−1.  相似文献   

13.
Interactions of dithioether ligands L2, L4 and L5 (L2 = 1,3-bis(4-(3-pyridyl) pyrimidin-2-ylthio) propane; L4 = 1,3-bis[4-(3-pyridyl) pyrimidinyl thiomethyl]benzene; L5 = 1,4-bis[4-(3-pyridyl)pyrimidinylthiomethyl] benzene) with Mn(II) ions and NH4SCN in an analogous way led to the formation of two discrete mononuclear complexes and a one-dimensional chain, respectively, which may be attributed to the different flexibility and positional isomerism of the ligands.  相似文献   

14.
Summary Several cobalt(II) halide complexes derived from 1,8-bis(2-pyridyl)-3,6-dithiaoctane (bpdto) are described. Chemical analysis suggests their formulae to be: Co(bpdto)X2 (X=Cl, Br, or I). Electrolytic conductivities in acetonitrile, magnetic moments at different temperatures, solid state i.r. and u.v.-visible spectra support a tetrahedral stereochemistry around the cobalt(II). The ligand is bidentate andN-bonded in all cases.This work was presented in the Fifth Annual Meeting of the Portuguese Chemical Society, Porto (Portugal), March 1982.  相似文献   

15.
Eight mixed-ligand coordination networks, [Cd(2-aba)(NO3)(4-bphz)3/2]n·n(dmf) (1), [Cd(2-aba)2(4-bphz)]n·0.75n(dmf) (2), [Cd(seb)(4-bphz)]n·n(H2O) (3), [Cd(seb)(4-bpmhz)]n·n(H2O) (4), [Cd(hpa)(3-bphz)]n (5), [Zn(1,3-bdc)(3-bpmhz)]n·n(MeOH) (6), [Cd(1,3-bdc)(3-bpmhz)]n ·0.5n(H2O)·0.5n(EtOH) (7), and [Cd(NO3)2(3-bphz)(bpe)]n·n(3-bphz) (8) were obtained by interplay of cadmium nitrate tetrahydrate or zinc nitrate hexahydrate with 2-aminobenzenecarboxylic acid (H(2-aba)), three dicarboxylic acids, sebacic (decanedioic acid, H2seb), homophthalic (2-(carboxymethyl)benzoic acid, H2hpa), isophthalic (1,3-benzenedicarboxylic acid, H2(1,3-bdc)) acids, bis(4-pyridyl)ethane (bpe) and with four azine ligands, 1,2-bis(pyridin-4-ylmethylene)hydrazine (4-bphz), 1,2-bis(1-(pyridin-4-yl)ethylidene) hydrazine (4-bpmhz), 1,2-bis(pyridin-3-ylmethylene)hydrazine (3-bphz), and 1,2-bis(1-(pyridin-3-yl) ethylidene)hydrazine (3-bpmhz). Compounds 1 and 2 are 1D coordination polymers, while compounds 3–8 are 2D coordination polymers. All compounds were characterized by spectroscopic and X-ray diffraction methods of analysis. The solvent uptakes and stabilities to the guest evacuation were studied and compared for 1D and 2D coordination networks. The de-solvated forms revealed a significant increase of emission in comparison with the as-synthesized crystals.  相似文献   

16.
In the presence of 3-(2-pyridyl)-5,6-bis(4-phenyl-sulphonicacid)-1,2,4-triazine disodium salt (PDTS), 3-(4-(4-phenylsulphonic-acid)-2-pyridyl)-5,6-bis(4-phenylsulphonic-acid)-1,2,4-triazine trisodium salt (PPDTS), or 2,4-bis(5,6-bis(4-phenylsulphonic-acid)-1,2,4-triazin-3-yl)pyridine tetra sodium salt (BDTPS), iron(III) oxidizes hydroxylamine to nitrogen gas, semicarbazide to CO2 and NH3 and thiosemicarbazide to a disulfide. The corresponding iron product is the 1:3 complex of iron(II) and PDTS, PPDTS, or BDTPS. The kinetics of these reactions was studied by monitoring the iron(II) product by conventional spectrophotometry. The reaction is first order in iron(III). Kinetic evidence was obtained for the formation of 1:1:2 ternary complexes of iron(III), substrate, and sulfonated triazine. Evidence for the ternary intermediate complexes was obtained by ion-exchange studies using 59Fe-labeled iron(III) solutions. The dissociation of the ternary complex is identified as the rate-determining step.  相似文献   

17.
A series of octakis(alkyloxy)-substituted Zn(II)-phthalocyanines were efficiently incorporated into an organogel made of (1R,2R)-trans-1,2-bis(dodecanoylamino)cyclohexane by means of multiple cooperative non-covalent interactions, and SEM revealed the formation of unique brush-like nanostructures.  相似文献   

18.
Metal complexes composed of bidentate 1,2-bis(2-methyl-5-(4-pyridyl)-3-thienyl)perfluorocyclopentene (1a) and monodentate 1-(2-methyl-5-phenyl-3-thienyl)-2-(2-methyl-5-(4-pyridyl)-3-thienyl)perfluorocyclopentene (2a) photochromic ligands and M(hfac)(2) (M = Zn(II), Mn(II), and Cu(II)) were prepared, and their photoinduced coordination structural changes were studied. X-ray crystallographic analyses showed the formation of coordination polymers and discrete 1:2 complexes for bidentate and monodentate ligands, respectively. The complexes underwent reversible photochromic reactions by alternate irradiation with UV and visible lights in solution as well as in the single-crystalline phase. Upon photoirradiation with UV and visible light, the ESR spectra of the copper complexes of 1a reversibly changed. While the open-ring isomer gave an axial-type spectrum, the photogenerated closed-ring isomer showed a rhombic-type spectrum. This indicates that the photoisomerization induced the change in the coordination structure.  相似文献   

19.
Three Ni(II) and Zn(II) complexes [Ni(L1)], [Ni(L2)], and [Zn(L3)(DMSO)] (L1 = 2,3-bis(2-hydroxybenzylideneimino)-2,3-butenedinitrile, L2 = 2,3-bis(2-hydroxy-3-methoxybenzylideneimino)-2,3-butenedinitrile, L3 = 2,3-bis(2-hydroxy-1-naphthylideneimino)-2,3-butenedinitrile) were obtained in DMSO by one-pot syntheses. The complexes were characterized by physicochemical and spectroscopic methods. Also, their solid-state structures were determined by single-crystal X-ray diffraction. The geometries of the Ni(II) and Zn(II) complexes were square planar and square pyramidal, respectively. The complexes were screened in vitro against a fungal species and eight species of bacteria, revealing their antimicrobial activity.  相似文献   

20.
Six new macrocyclic complexes were synthesized by template reaction of (±)-1,4-bis(3-aminopropoxy)butane with metal(II) nitrate and 1,10-bis(2-formylphenyl)-1,4,7,10-tetraoxadecane or 1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane and their structures were proposed on the basis of elemental analysis, FT-IR, UV-Vis, molar conductivity measurements, 1H NMR and mass spectra. The metals to ligand molar ratios of the complexes were found to be 1: 1. The complexes are 1: 2 electrolytes for Pb(II) and Zn(II) complexes and 1: 3 electrolytes for La(III) as shown by their molar conductivities (Λm) in DMSO at 10−3 mol L−1. Due to the existence of free ions in these complexes, such complexes are electrically conductive. The configurations of La(III) and Zn(II) complexes were proposed to probably octahedral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号