首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel method for the in situ synthesis of dual‐phase thermosensitive ultrasmall gold nanoparticles (USGNPs) with diameters in the range of 1–3 nm was developed by using poly(N‐isopropylacrylamide)‐block‐poly(N‐phenylethylenediamine methacrylamide) (PNIPAM‐b‐PNPEDMA) amphiphilic diblock copolymers as ligands. The PNPEDMA block promotes the in situ reduction of gold precursors to zero‐valent gold and subsequently binds to the surface of gold nanoparticles, while PNIPAM acts as a stabilizing and thermosensitive block. The as‐synthesized USGNPs stabilized by a thermosensitive PNIPAM layer exhibit a sharp, reversible, clear–opaque transition in aqueous solution between 30 and 38 °C. An unprecedented finding is that these USGNPs also show a reversible soluble–precipitate transition in nonpolar organic solvents such as chloroform at around 0 °C under acidic conditions.  相似文献   

2.
The activity of the P-glycoprotein (P-gp) transporter encoded by the ABCB1 gene confers resistance to anticancer drugs and contributes to cancer-related mortality and morbidity. Recent studies revealed the cytotoxic effects of the endogenous dipeptide carnosine. The current study aimed to investigate the role of carnosine as a potential inhibitor of P-gp activity. We used molecular docking and molecular dynamic simulations to study the possible binding and stability of carnosine-P-gp interactions compared with verapamil. In vitro assays using doxorubicin-resistant NCI/ADR-RES cells were established to test the effects of carnosine (10–300 µM) on P-gp activity by the rhodamine-123 efflux assay and its effect on cell viability and doxorubicin-induced cytotoxicity. Verapamil (10 µM) was used as a positive control. The results showed that carnosine binding depends mainly on hydrogen bonding with GLU875, GLN946, and ALA871, with a higher average Hbond than verapamil. Carnosine showed significant but weaker than verapamil-induced rhodamine-123 accumulation. Carnosine and verapamil similarly inhibited cell viability. However, verapamil showed a more significant potentiating effect on doxorubicin-induced cytotoxicity than a weaker effect of carnosine at 300 µM. These results suggest that carnosine inhibits P-gp activity and potentiates doxorubicin-induced cytotoxicity at higher concentrations. Carnosine might be a helpful lead compound in the fight against multidrug-resistant cancers.  相似文献   

3.
Combining nanotechnology and bioorthogonal chemistry for theranostic strategies offers the possibility to develop next generation nanomedicines. These materials are thought to increase therapeutic outcome and improve current cancer management. Due to their size, nanomedicines target tumors passively. Thus, they can be used for drug delivery purposes. Bioorthogonal chemistry allows for a pretargeting approach. Higher target-to-background drug accumulation ratios can be achieved. Pretargeting can also be used to induce internalization processes or trigger controlled drug release. Colloidal gold nanoparticles (AuNPs) have attracted widespread interest as drug delivery vectors within the last decades. Here, we demonstrate for the first time the possibility to successfully ligate AuNPs in vivo to pretargeted monoclonal antibodies. We believe that this possibility will facilitate the development of AuNPs for clinical use and ultimately, improve state-of-the-art patient care.  相似文献   

4.
Remarkable magneto‐optical properties of a new isolator material, that is, europium sulfide nanocrystals with gold (EuS–Au nanosystem), has been demonstrated for a future photo‐information technology. Attachment of gold particles that exhibit surface plasmon resonance leads to amplification of the magneto‐optical properties of the EuS nanocrystals. To construct the EuS–Au nanosystems, cubic EuS and spherical Au nanocrystals have been joined by a variety of organic linkers, that is, 1,2‐ethanedithiol (EDT), 1,6‐hexanedithiol (HDT), 1,10‐decanedithiol (DDT), 1,4‐bisethanethionaphthalene (NpEDT), or 1,4‐bisdecanethionaphthalene (NpDDT) . Formation of these systems was observed by XRD, TEM, and absorption spectra measurements. The magneto‐optical properties of the EuS–Au nanosystem have been characterized by using Faraday rotation spectroscopy. The Faraday rotation angle of the EuS–Au nanosystem is dependent on the Au particle size and interparticle distance between EuS and Au nanocrystals. Enhancement of the Faraday rotation of EuS–Au nanosystems was observed. The spin configuration in the excited state of the EuS–Au nanosystem was also investigated using photo‐assisted electron paramagnetic resonance.  相似文献   

5.
Cancer-based magnetic theranostics has gained significant interest in recent years and can contribute as an influential archetype in the effective treatment of cancer. Owing to their excellent biocompatibility, minute sizes and reactive functional surface groups, magnetic nanoparticles (MNPs) are being explored as potential drug delivery systems. In this study, MgFe2O4 ferrite MNPs were evaluated for their potential to augment the delivery of the anticancer drug doxorubicin (DOX). These MNPs were successfully synthesized by the glycol-thermal method and functionalized with the polymers; chitosan (CHI), polyvinyl alcohol (PVA) and polyethylene glycol (PEG), respectively, as confirmed by Fourier transform infrared (FTIR) spectroscopy. X-ray diffraction (XRD) confirmed the formation of the single-phase cubic spinel structures while vibrating sample magnetometer (VSM) analysis confirmed the superparamagnetic properties of all MNPs. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) revealed small, compact structures with good colloidal stability. CHI-MNPs had the highest DOX encapsulation (84.28%), with the PVA-MNPs recording the lowest encapsulation efficiency (59.49%). The 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) cytotoxicity assays conducted in the human embryonic kidney (HEK293), colorectal adenocarcinoma (Caco-2), and breast adenocarcinoma (SKBR-3) cell lines showed that all the drug-free polymerized MNPs promoted cell survival, while the DOX loaded MNPs significantly reduced cell viability in a dose-dependent manner. The DOX-CHI-MNPs possessed superior anticancer activity (<40% cell viability), with approximately 85.86% of the drug released after 72 h in a pH-responsive manner. These MNPs have shown good potential in enhancing drug delivery, thus warranting further optimizations and investigations.  相似文献   

6.
7.
Gold nanoparticles protected by a novel π‐conjugated polymer [poly(p‐phenylene ethynylene) containing pendent disulfide and bipyridine groups] are synthesized and characterized. The polymer can stabilize the gold nanoparticles effectively. The nonlinear optical properties of the gold nanoparticle colloid solutions in toluene are investigated by using the Z‐scan technique at a wavelength of 532 nm and pulse width of 4 ns. The gold‐nanoparticle colloid solutions show an exceptional nonlinear absorption effect, which simultaneously contains the saturated absorption resulting from third‐order nonlinearity and a large reverse‐saturated absorption resulting from fifth‐order nonlinearity. In addition, asymmetric self‐focusing refractive effects are investigated in the colloid solutions.  相似文献   

8.
Water‐soluble gold nanoparticles (Au NPs) stabilized by a nitrogen‐rich poly(ethylene glycol) (PEG)‐tagged substrate have been prepared by reduction of HAuCl4 with NaBH4 in water at room temperature. The morphology and size of the nanoparticles can be controlled by simply varying the gold/stabilizer ratio. The nanoparticles have been fully characterized by TEM, high‐resolution (HR) TEM, electron diffraction (ED), energy‐dispersive X‐ray spectroscopy (EDS), UV/Vis, powder XRD, and elemental analysis. The material is efficient as a recyclable catalyst for the selective reduction of nitroarenes with NaBH4 to yield the corresponding anilines in water at room temperature. Furthermore, the potential ability of the Au NPs as a refractive index sensor owing to their localized surface plasmon resonance (LSPR) effect has also been assessed.  相似文献   

9.
Novel multielement Au/La‐SrTiO3 microspheres were synthesized by a solvothermal method using monodisperse gold and La‐SrTiO3 nanocrystals as building blocks. The porous Au/La‐SrTiO3 microspheres had a large surface area of 94.6 m2 g?1. The stable confined Au nanoparticles demonstrated strong surface plasmon resonance effect, leading to enhanced absorption in a broad UV/Vis/NIR range. Doping of rare‐earth metal La also broadened the absorption band to the visible region. Both the conduction and valence bands of Au/La‐SrTiO3 microspheres thus show favorable potential for proton reduction under visible light. The superimposed effect of Au nanoparticles and La doping in Au/La‐SrTiO3 microspheres led to high photocurrent density in photoelectrochemical water splitting and good photocatalytic activity in photodegradation of rhodamine B. The photocatalytic activities are in the order of the following: Au/La‐SrTiO3 microspheres>Au/SrTiO3 microspheres>La‐SrTiO3 microspheres>SrTiO3 microspheres.  相似文献   

10.
The enhanced antioxidant activity of surface‐functionalized gold nanoparticles (AuNPs) synthesized by self‐assembly has attracted great attention, but little is known about the mechanism behind the enhanced activity. To address this challenge, the antioxidant activity of Au@PEG3SA (i.e., surface‐functionalization of spherical AuNPs with the antioxidant salvianic acid A) was used as an example to illustrate the mechanism of the enhanced activity. Evaluation of the antioxidant activity was performed in a radical‐scavenging reaction between Au@PEG3SA and 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) radical. As expected, the rate constant for the reaction of Au@PEG3SA with DPPH was about nine times greater than that for the salvianic acid A monomer. A comparative analysis of the spectral characteristics of Au@PEG3SA and the salvianic acid A monomer further imply that the enhancement of the antioxidative reaction kinetics may be ascribed to the variation in the transition state for the DPPH‐radical scavenging reaction through π–π stacking interactions between and among adjacent groups on the surface of Au@PEG3SA. On the other hand, the kinetic enhancement of Au@PEG3SA on reactive‐oxygen‐species (ROS) scavenging can be observed in living cells and in vivo, which possibly provides new insight for the bioapplication of self‐assembly of surface‐functionalized AuNPs.  相似文献   

11.
Osteosarcoma (OS) is a malignant tumor, fatal for pediatric patients who do not respond to chemotherapy, alternative therapies and drugs can provide better outcomes. Zoledronic acid (Zol) belonging to the class of bisphosphonates (BPs) has a direct antitumor ability to prevent Ras GTPases modification and stimulate apoptosis. Despite advances in maintaining balance in skeletal events and direct anticancer properties, Zol causes cytotoxicity to normal healthy pre-osteoblast cells, hampering mineralization and differentiation. The study reports the preparation and evaluation of a nanoformulation that can diminish the existing drawbacks of native Zol. The cytotoxic effect is evaluated on bone cancer cells and healthy bone cells with three different cell lines namely, K7M2 (mouse OS cell line), SaOS2 (human OS cell line), and MC3T3E1 (healthy cell counterpart). It is observed that Zol nanoformulation is uptaken more (95%) in K7M2 whereas in MC3T3E1, the percent population internalizing nanoparticles (NPs) is 45%. Zol has a sustained release of 15% after 96 h from the NP which leads to a rescuing effect on the normal pre-osteoblast cells. In conclusion, it can be stated that Zol nanoformulation can be used as a good platform for a sustained release system with minimum side effects to normal bone cells.  相似文献   

12.
A series of gold nanoparticles (AuNPs) stabilized by monodentate, bidentate, and tridentate thiolate calix[n]arene ligands 1 – 3 was prepared by using the Brust–Schiffrin two‐phase direct synthesis and characterized with NMR spectroscopy, elemental analysis, transmission electron microscopy (TEM), and X‐ray photoelectron spectroscopy (XPS). The experimental data show that the particular multidentate structure of calix[n]arene derivatives 2 and 3 introduces a control element in the preparation of the gold nanoparticles that allows, in the particular experimental conditions here reported, to obtain very small (≈1 nm) AuNPs. These are the first experimental findings that identify a role of ligand “denticity” in the determination of the nuclearity of nanoparticles.  相似文献   

13.
Novel positive thermosensitive microgels of poly(acrylamide–acrylic acid) with embedded gold nanoparticles have been synthesized and characterized by means of dynamic light scattering, UV‐vis spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. These systems show temperature (upper critical solution temperature‐like volume phase transition) and optical responsiveness making them externally triggered systems.

  相似文献   


14.
A key to realizing the sustainable society is to develop highly active photocatalysts for selective organic synthesis effectively using sunlight as the energy source. Recently, metal‐oxide‐supported gold nanoparticles (NPs) have emerged as a new type of visible‐light photocatalysts driven by the excitation of localized surface plasmon resonance of Au NPs. Here we show that visible‐light irradiation (λ>430 nm) of TiO2‐supported Au NPs with a bimodal size distribution (BM‐Au/TiO2) gives rise to the long‐range (>40 nm) electron transport from about 14 small (ca. 2 nm) Au NPs to one large (ca. 9 nm) Au NP through the conduction band of TiO2. As a result of the enhancement of charge separation, BM‐Au/TiO2 exhibits a high level of visible‐light activity for the one‐step synthesis of azobenzenes from nitrobenzenes at 25 °C with a yield greater than 95 % and a selectivity greater than 99 %, whereas unimodal Au/TiO2 (UM‐Au/TiO2) is photocatalytically inactive.  相似文献   

15.
以细胞色素c(Cyt c)为模型蛋白,采用表面增强红外吸收光谱监测了三明治结构所吸附的纳米金对氧化还原诱导的Cyt c表面增强红外差谱的改变.研究表明,在单层Cyt c分子表面组装纳米金,使得血红素的红外差谱特征峰明显增强,这归因于纳米金和血红素之间的电子传递.纳米金与Cyt c氧化还原活性中心血红素的相互作用加速了蛋白质的电子传递.这为实现并优化表面吸附蛋白质的直接电化学提供了一种新技术.  相似文献   

16.
Efficient electrical communication between redox proteins and electrodes is a critical issue in the operation and development of amperometric biosensors. The present study explores the advantages of a nanostructured redox‐active polyelectrolyte–surfactant complex containing [Os(bpy)2Clpy]2+ (bpy=2,2′‐bipyridine, py= pyridine) as the redox centers and gold nanoparticles (AuNPs) as nanodomains for boosting the electron‐transfer propagation throughout the assembled film in the presence of glucose oxidase (GOx). Film structure was characterized by grazing‐incidence small‐angle X‐ray scattering (GISAXS) and atomic force microscopy (AFM), GOx incorporation was followed by surface plasmon resonance (SPR) and quartz‐crystal microbalance with dissipation (QCM‐D), whereas Raman spectroelectrochemistry and electrochemical studies confirmed the ability of the entrapped gold nanoparticles to enhance the electron‐transfer processes between the enzyme and the electrode surface. Our results show that nanocomposite films exhibit five‐fold increase in current response to glucose compared with analogous supramolecular AuNP‐free films. The introduction of colloidal gold promotes drastic mesostructural changes in the film, which in turn leads to a rigid, amorphous interfacial architecture where nanoparticles, redox centers, and GOx remain in close proximity, thus improving the electron‐transfer process.  相似文献   

17.
Composite materials consisting of nanoscale gold particles and protective polymer shells were designed and tested as catalysts in various chemical reactions. Initially, the systematic incorporation of multiple gold nanoparticles into a poly(N-isopropylacrylamide) particle was achieved by an in situ method under light irradiation. The degree of gold nanoparticle loading, along with the structural and morphological properties, was examined as a function of the amount of initial gold ions and reducing agent. As these gold nanoparticles were physically-embedded within the polymer particle in the absence of strong interfacial interactions between the gold nanoparticles and polymer matrix, the readily-accessible surface of the gold nanoparticles with a highly increased stability allowed for their use as recyclable catalysts in oxidation, reduction, and coupling reactions. Overall, the ability to integrate catalytically-active metal nanoparticles within polymer particles in situ allows for designing novel composite materials for multi-purpose catalytic systems.  相似文献   

18.
19.
20.
Gold nanoparticles with hydrophobic polystyrene (PS) and hydrophilic poly[poly(ethylene glycol) methyl ether methacrylate] (PPEGMA) mixed polymer brushes are prepared. Different morphologies of the nanoparticles can be observed in chloroform (a common solvent for both of the polymers) and water (a precipitant for PS and a good solvent for PPEGMA). The nanoparticles can be used as surfactants in Pickering suspension polymerization. Upon addition of nanoparticles to a mixture of oil and water, the nanoparticles locate at the interface and the size of the oil droplets gets smaller. After polymerization of styrene oil droplets PS colloid particles with gold nanoparticles on the surface can be obtained.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号