首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pursuit–evasion game is a classical maneuver confrontation problem in the multi-agent systems (MASs) domain. An online decision technique based on deep reinforcement learning (DRL) was developed in this paper to address the problem of environment sensing and decision-making in pursuit–evasion games. A control-oriented framework developed from the DRL-based multi-agent deep deterministic policy gradient (MADDPG) algorithm was built to implement multi-agent cooperative decision-making to overcome the limitation of the tedious state variables required for the traditionally complicated modeling process. To address the effects of errors between a model and a real scenario, this paper introduces adversarial disturbances. It also proposes a novel adversarial attack trick and adversarial learning MADDPG (A2-MADDPG) algorithm. By introducing an adversarial attack trick for the agents themselves, uncertainties of the real world are modeled, thereby optimizing robust training. During the training process, adversarial learning was incorporated into our algorithm to preprocess the actions of multiple agents, which enabled them to properly respond to uncertain dynamic changes in MASs. Experimental results verified that the proposed approach provides superior performance and effectiveness for pursuers and evaders, and both can learn the corresponding confrontational strategy during training.  相似文献   

2.
In this paper, we propose to quantitatively compare loss functions based on parameterized Tsallis–Havrda–Charvat entropy and classical Shannon entropy for the training of a deep network in the case of small datasets which are usually encountered in medical applications. Shannon cross-entropy is widely used as a loss function for most neural networks applied to the segmentation, classification and detection of images. Shannon entropy is a particular case of Tsallis–Havrda–Charvat entropy. In this work, we compare these two entropies through a medical application for predicting recurrence in patients with head–neck and lung cancers after treatment. Based on both CT images and patient information, a multitask deep neural network is proposed to perform a recurrence prediction task using cross-entropy as a loss function and an image reconstruction task. Tsallis–Havrda–Charvat cross-entropy is a parameterized cross-entropy with the parameter α . Shannon entropy is a particular case of Tsallis–Havrda–Charvat entropy for α=1 . The influence of this parameter on the final prediction results is studied. In this paper, the experiments are conducted on two datasets including in total 580 patients, of whom 434 suffered from head–neck cancers and 146 from lung cancers. The results show that Tsallis–Havrda–Charvat entropy can achieve better performance in terms of prediction accuracy with some values of α .  相似文献   

3.
This paper explains a thorough exergy analysis of the most important reactions in soil–plant interactions. Soil, which is a prime mover of gases, metals, structural crystals, and electrolytes, constantly resembles an electric field of charge and discharge. The second law of thermodynamics reflects the deterioration of resources through the destruction of exergy. In this study, we developed a new method to assess the exergy of soil and plant formation processes. Depending on the types of soil, one may assess the efficiency and degradation of resources by incorporating or using biomass storage. According to the results of this study, during different processes from the mineralization process to nutrient uptake by the plant, about 62.5% of the input exergy will be destroyed because of the soil solution reactions. Most of the exergy destruction occurs in the biota–atmosphere subsystem, especially in the photosynthesis reaction, due to its low efficiency (about 15%). Humus and protonation reactions, with 14% and 13% exergy destruction, respectively, are the most exergy destroying reactions. Respiratory, weathering, and reverse weathering reactions account for the lowest percentage of exergy destruction and less than one percent of total exergy destruction in the soil system. The total exergy yield of the soil system is estimated at about 37.45%.  相似文献   

4.
In this paper, we introduce new divergences called Jensen–Sharma–Mittal and Jeffreys–Sharma–Mittal in relation to convex functions. Some theorems, which give the lower and upper bounds for two new introduced divergences, are provided. The obtained results imply some new inequalities corresponding to known divergences. Some examples, which show that these are the generalizations of Rényi, Tsallis, and Kullback–Leibler types of divergences, are provided in order to show a few applications of new divergences.  相似文献   

5.
In this paper, a grid-free deep learning method based on a physics-informed neural network is proposed for solving coupled Stokes–Darcy equations with Bever–Joseph–Saffman interface conditions. This method has the advantage of avoiding grid generation and can greatly reduce the amount of computation when solving complex problems. Although original physical neural network algorithms have been used to solve many differential equations, we find that the direct use of physical neural networks to solve coupled Stokes–Darcy equations does not provide accurate solutions in some cases, such as rigid terms due to small parameters and interface discontinuity problems. In order to improve the approximation ability of a physics-informed neural network, we propose a loss-function-weighted function strategy, a parallel network structure strategy, and a local adaptive activation function strategy. In addition, the physical information neural network with an added strategy provides inspiration for solving other more complicated problems of multi-physical field coupling. Finally, the effectiveness of the proposed strategy is verified by numerical experiments.  相似文献   

6.
This paper presents a difference-type lower bound for the Bayes risk as a difference-type extension of the Borovkov–Sakhanenko bound. The resulting bound asymptotically improves the Bobrovsky–Mayor–Wolf–Zakai bound which is difference-type extension of the Van Trees bound. Some examples are also given.  相似文献   

7.
In the thermodynamic equilibrium of dipolar-coupled spin systems under the influence of a Dzyaloshinskii–Moriya (D–M) interaction along the z-axis, the current study explores the quantum-memory-assisted entropic uncertainty relation (QMA-EUR), entropy mixedness and the concurrence two-spin entanglement. Quantum entanglement is reduced at increased temperature values, but inflation uncertainty and mixedness are enhanced. The considered quantum effects are stabilized to their stationary values at high temperatures. The two-spin entanglement is entirely repressed if the D–M interaction is disregarded, and the entropic uncertainty and entropy mixedness reach their maximum values for equal coupling rates. Rather than the concurrence, the entropy mixedness can be a proper indicator of the nature of the entropic uncertainty. The effect of model parameters (D–M coupling and dipole–dipole spin) on the quantum dynamic effects in thermal environment temperature is explored. The results reveal that the model parameters cause significant variations in the predicted QMA-EUR.  相似文献   

8.
Autoencoders are a self-supervised learning system where, during training, the output is an approximation of the input. Typically, autoencoders have three parts: Encoder (which produces a compressed latent space representation of the input data), the Latent Space (which retains the knowledge in the input data with reduced dimensionality but preserves maximum information) and the Decoder (which reconstructs the input data from the compressed latent space). Autoencoders have found wide applications in dimensionality reduction, object detection, image classification, and image denoising applications. Variational Autoencoders (VAEs) can be regarded as enhanced Autoencoders where a Bayesian approach is used to learn the probability distribution of the input data. VAEs have found wide applications in generating data for speech, images, and text. In this paper, we present a general comprehensive overview of variational autoencoders. We discuss problems with the VAEs and present several variants of the VAEs that attempt to provide solutions to the problems. We present applications of variational autoencoders for finance (a new and emerging field of application), speech/audio source separation, and biosignal applications. Experimental results are presented for an example of speech source separation to illustrate the powerful application of variants of VAE: VAE, β-VAE, and ITL-AE. We conclude the paper with a summary, and we identify possible areas of research in improving performance of VAEs in particular and deep generative models in general, of which VAEs and generative adversarial networks (GANs) are examples.  相似文献   

9.
The study of topological invariants of phase diagrams allows for the development of a qualitative theory of the processes being researched. Studies of the properties of objects in the same equivalence class may be carried out with the aim of predicting the properties of unexplored objects from this class, or predicting the behavior of a whole system. This paper describes a number of topological invariants in vapor–liquid, vapor–liquid–liquid and liquid–liquid equilibrium diagrams. The properties of some invariants are studied and illustrated. It is shown that the invariant of a diagram with a miscibility gap can be used to distinguish equivalence classes of phase diagrams, and that the balance equation of the singular-point indices, based on the Euler characteristic, may be used to analyze the binodal-surface structure of a quaternary system.  相似文献   

10.
Entropy estimation faces numerous challenges when applied to various real-world problems. Our interest is in divergence and entropy estimation algorithms which are capable of rapid estimation for natural sequence data such as human and synthetic languages. This typically requires a large amount of data; however, we propose a new approach which is based on a new rank-based analytic Zipf–Mandelbrot–Li probabilistic model. Unlike previous approaches, which do not consider the nature of the probability distribution in relation to language; here, we introduce a novel analytic Zipfian model which includes linguistic constraints. This provides more accurate distributions for natural sequences such as natural or synthetic emergent languages. Results are given which indicates the performance of the proposed ZML model. We derive an entropy estimation method which incorporates the linguistic constraint-based Zipf–Mandelbrot–Li into a new non-equiprobable coincidence counting algorithm which is shown to be effective for tasks such as entropy rate estimation with limited data.  相似文献   

11.
In this work, we first consider the discrete version of Fisher information measure and then propose Jensen–Fisher information, to develop some associated results. Next, we consider Fisher information and Bayes–Fisher information measures for mixing parameter vector of a finite mixture probability mass function and establish some results. We provide some connections between these measures with some known informational measures such as chi-square divergence, Shannon entropy, Kullback–Leibler, Jeffreys and Jensen–Shannon divergences.  相似文献   

12.
With the aim of improving the reconstruction of stochastic evolution equations from empirical time-series data, we derive a full representation of the generator of the Kramers–Moyal operator via a power-series expansion of the exponential operator. This expansion is necessary for deriving the different terms in a stochastic differential equation. With the full representation of this operator, we are able to separate finite-time corrections of the power-series expansion of arbitrary order into terms with and without derivatives of the Kramers–Moyal coefficients. We arrive at a closed-form solution expressed through conditional moments, which can be extracted directly from time-series data with a finite sampling intervals. We provide all finite-time correction terms for parametric and non-parametric estimation of the Kramers–Moyal coefficients for discontinuous processes which can be easily implemented—employing Bell polynomials—in time-series analyses of stochastic processes. With exemplary cases of insufficiently sampled diffusion and jump-diffusion processes, we demonstrate the advantages of our arbitrary-order finite-time corrections and their impact in distinguishing diffusion and jump-diffusion processes strictly from time-series data.  相似文献   

13.
Kullback–Leibler divergence KL(p,q) is the standard measure of error when we have a true probability distribution p which is approximate with probability distribution q. Its efficient computation is essential in many tasks, as in approximate computation or as a measure of error when learning a probability. In high dimensional probabilities, as the ones associated with Bayesian networks, a direct computation can be unfeasible. This paper considers the case of efficiently computing the Kullback–Leibler divergence of two probability distributions, each one of them coming from a different Bayesian network, which might have different structures. The paper is based on an auxiliary deletion algorithm to compute the necessary marginal distributions, but using a cache of operations with potentials in order to reuse past computations whenever they are necessary. The algorithms are tested with Bayesian networks from the bnlearn repository. Computer code in Python is provided taking as basis pgmpy, a library for working with probabilistic graphical models.  相似文献   

14.
Nature–inspired computing is a promising field of artificial intelligence. This area is mainly devoted to designing computational models based on natural phenomena to address complex problems. Nature provides a rich source of inspiration for designing smart procedures capable of becoming powerful algorithms. Many of these procedures have been successfully developed to treat optimization problems, with impressive results. Nonetheless, for these algorithms to reach their maximum performance, a proper balance between the intensification and the diversification phases is required. The intensification generates a local solution around the best solution by exploiting a promising region. Diversification is responsible for finding new solutions when the main procedure is trapped in a local region. This procedure is usually carryout by non-deterministic fundamentals that do not necessarily provide the expected results. Here, we encounter the stagnation problem, which describes a scenario where the search for the optimum solution stalls before discovering a globally optimal solution. In this work, we propose an efficient technique for detecting and leaving local optimum regions based on Shannon entropy. This component can measure the uncertainty level of the observations taken from random variables. We employ this principle on three well–known population–based bio–inspired optimization algorithms: particle swarm optimization, bat optimization, and black hole algorithm. The proposal’s performance is evidenced by solving twenty of the most challenging instances of the multidimensional knapsack problem. Computational results show that the proposed exploration approach is a legitimate alternative to manage the diversification of solutions since the improved techniques can generate a better distribution of the optimal values found. The best results are with the bat method, where in all instances, the enhanced solver with the Shannon exploration strategy works better than its native version. For the other two bio-inspired algorithms, the proposal operates significantly better in over 70% of instances.  相似文献   

15.
In several applications, the assumption of normality is often violated in data with some level of skewness, so skewness affects the mean’s estimation. The class of skew–normal distributions is considered, given their flexibility for modeling data with asymmetry parameter. In this paper, we considered two location parameter (μ) estimation methods in the skew–normal setting, where the coefficient of variation and the skewness parameter are known. Specifically, the least square estimator (LSE) and the best unbiased estimator (BUE) for μ are considered. The properties for BUE (which dominates LSE) using classic theorems of information theory are explored, which provides a way to measure the uncertainty of location parameter estimations. Specifically, inequalities based on convexity property enable obtaining lower and upper bounds for differential entropy and Fisher information. Some simulations illustrate the behavior of differential entropy and Fisher information bounds.  相似文献   

16.
The development of computational artifacts to study cross-modal associations has been a growing research topic, as they allow new degrees of abstraction. In this context, we propose a novel approach to the computational exploration of relationships between music and abstract images, grounded by findings from cognitive sciences (emotion and perception). Due to the problem’s high-level nature, we rely on evolutionary programming techniques to evolve this audio–visual dialogue. To articulate the complexity of the problem, we develop a framework with four modules: (i) vocabulary set, (ii) music generator, (iii) image generator, and (iv) evolutionary engine. We test our approach by evolving a given music set to a corresponding set of images, steered by the expression of four emotions (angry, calm, happy, sad). Then, we perform preliminary user tests to evaluate if the user’s perception is consistent with the system’s expression. Results suggest an agreement between the user’s emotional perception of the music–image pairs and the system outcomes, favoring the integration of cognitive science knowledge. We also discuss the benefit of employing evolutionary strategies, such as genetic programming on multi-modal problems of a creative nature. Overall, this research contributes to a better understanding of the foundations of auditory–visual associations mediated by emotions and perception.  相似文献   

17.
Functional modules can be predicted using genome-wide protein–protein interactions (PPIs) from a systematic perspective. Various graph clustering algorithms have been applied to PPI networks for this task. In particular, the detection of overlapping clusters is necessary because a protein is involved in multiple functions under different conditions. graph entropy (GE) is a novel metric to assess the quality of clusters in a large, complex network. In this study, the unweighted and weighted GE algorithm is evaluated to prove the validity of predicting function modules. To measure clustering accuracy, the clustering results are compared to protein complexes and Gene Ontology (GO) annotations as references. We demonstrate that the GE algorithm is more accurate in overlapping clusters than the other competitive methods. Moreover, we confirm the biological feasibility of the proteins that occur most frequently in the set of identified clusters. Finally, novel proteins for the additional annotation of GO terms are revealed.  相似文献   

18.
In this paper, we construct a fully discrete and decoupled Crank–Nicolson Leap-Frog (CNLF) scheme for solving the modified phase field crystal model (MPFC) with long-range interaction. The idea of CNLF is to treat stiff terms implicity with Crank–Nicolson and to treat non-stiff terms explicitly with Leap-Frog. In addition, the scalar auxiliary variable (SAV) method is used to allow explicit treatment of the nonlinear potential, then, these technique combines with CNLF can lead to the highly efficient, fully decoupled and linear numerical scheme with constant coefficients at each time step. Furthermore, the Fourier spectral method is used for the spatial discretization. Finally, we show that the CNLF scheme is fully discrete, second-order decoupled and unconditionally stable. Ample numerical experiments in 2D and 3D are provided to demonstrate the accuracy, efficiency, and stability of the proposed method.  相似文献   

19.
With the intensification of people’s production and life behaviors, the systemic risks of water, energy and food in the Yangtze River Basin have become increasingly prominent, which has become a bottleneck for sustainable development of social, economic and ecological in the basin. Therefore, studying the symbiotic coordination between water, energy and food is of great significance to promoting regional sustainable development. First, from the perspective of water–energy–food symbiosis, with the water–energy–food ecosystem conceptual model as the nexus, the two-step measurement model of the symbiotic index and the symbiotic level index is used to study the water–energy–food symbiosis of the Yangtze River. Then, we use the BP-DEMATEL-GTCW model to identify the key influencing factors that affect the symbiotic security of the water–energy–food ecosystem. In this research, it is found that the average value of the symbiotic degree of the water–energy–food ecosystem of the 11 provinces or municipalities in the Yangtze River Basin only reached the risk grade. It can also be seen from the identification results of key influencing factors that energy microsystem-related indicators have a greater impact on the symbiotic development of the entire WEF ecosystem. Therefore, special attention needs to be paid to increasing energy sources and reducing expenditure. Relevant departments need to effectively develop primary energy production and expand energy-saving investment through multiple channels to expand energy self-sufficiency and ultimately promote the coordinated and effective development of water, energy and food in the Yangtze River Basin.  相似文献   

20.
We investigate quantum information by a theoretical measurement approach of an Aharanov–Bohm (AB) ring with Yukawa interaction in curved space with disclination. We obtained the so-called Shannon entropy through the eigenfunctions of the system. The quantum states considered come from Schrödinger theory with the AB field in the background of curved space. With this entropy, we can explore the quantum information at the position space and reciprocal space. Furthermore, we discussed how the magnetic field, the AB flux, and the topological defect influence the quantum states and the information entropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号