首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
9,10-二氰蒽(DCA)敏化的烯烃和某些小环化合物的电子转移光氧化反应近年来研究很活跃。在芳烃光氧化方面,单重态氧反应限于多环芳烃和高度富电子的苯衍生物。一般烷基苯和富电子程度较小的芳烃,对~1O_2为隋性。因而电子转移历程为芳烃光氧化反应提供了新途径。但迄今芳烃的电子转移光氧化仍研究较少,历程看法也存在分歧。本文报道DCA和四氯对苯二醌(TCBQ)敏化的邻、间、对二甲苯(1,2,3),对-甲氧基  相似文献   

2.
对于容易发生单线态氧(^1O2)反应的稠环烯烃能否在氰基蒽敏化下发生电子转移光氧化研究甚少. 作者曾报道了氰基蒽敏化的9-本甲叉芴的ET光氧化过程. 本文首次探讨了非交替稠环烃, 苊烯(AN), 在9,10-二氰蒽(DCA)或9-氰基蒽(CNA)敏化下的光氧化反应及其机理.  相似文献   

3.
研究了苊酮(ANO)在9,10-二氰蒽(DCA)敏化下的光氧化反应与机理。实验发现,该反应具有逐步氧化模式,依次生成1,8-(3′-羟基)-斗-萘内酯和1,8-萘二甲酸酐。通过循环伏安,荧光淬灭和激基络合物检测,DCA/联苯共敏化反应以及CIDNP效应等研究,证明苊酮可以作为电子给体与单线态DCA发生热力学上有利的电子转移过程。  相似文献   

4.
由缺电子光敏剂所引起的电子转移(ET)光氧化反应目前已受到广泛注意.然而,对于容易发生单线态氧(~1O_2)反应的稠环烯烃能否在氰基蒽敏化下发生ET光氧化仍研究甚少.最近作者报道了氰基蒽敏化的9-苯甲叉芴的ET光氧化过程.本文首次探讨了非交替稠环烃,苊烯(AN),在9,10-二氰蒽(DCA)或9-氰基蒽(CNA)敏化下的光氧化反应及其机理. Takeshita等不久前报道,AN受玫瑰红(RB)敏化生成的~1O_2反应产物为顺或反式  相似文献   

5.
本文研究了由9,10-二氰蒽(DCA)敏化的2-烷基-1,1-二苯乙烯1a—1b(Ph_2C=CHR,R=Me,Et,Pr)的光氧化反应及其机理。反应给出主要产物二苯酮,次要产物为环氧化物及其氢转移重排产物。产物分布特征、量子收率、氧化电位与热力学分析、荧光猝灭的Stern-Volmer关系等结果均表明该反应是通过DCA敏化循环链的电子转移进行的。自由基负离子中间体DCA的电子自旋共振谱的检测亦为上述电子转移反应机理提供了直接证据。因此,在1,1-二苯乙烯双键上引入烷基时,其光氧化反应仍按电子转移机理进行。  相似文献   

6.
研究了9,10-二氰蒽(DCA)和四氯对苯二醌(TCBQ)敏化的甲苯、对氯甲苯、对氰基甲苯和对硝基甲苯的电子转移光氧化反应。DCA和TCBQ均可敏化甲苯和对氯甲苯的光氧化。产物为相应的取代苯甲酸和取代苯甲醛。DCA和TCBQ均不能有效敏化对氰基甲苯和对硝基甲苯的光氧化, 但在反应体系中加入与反应物等摩尔的联苯为共敏化剂后, 两者即可顺利氧化为相应的取代苯甲酸和取代苯甲醛。通过荧光淬灭和共敏化剂联苯、无水盐高氯酸镁、O2捕获剂对苯二醌以及电子给体对二甲氧基苯等外加试剂对光氧化的影响讨论了反应历程。  相似文献   

7.
研究了9,10-二氰蒽(DCA)和四氯对苯二醌(TCBQ)敏化的甲苯、对氯甲苯、对氰基甲苯和对硝基甲苯的电子转移光氧化反应。DCA和TCBQ均可敏化甲苯和对氯甲苯的光氧化。产物为相应的取代苯甲酸和取代苯甲醛。DCA和TCBQ均不能有效敏化对氰基甲苯和对硝基甲苯的光氧化, 但在反应体系中加入与反应物等摩尔的联苯为共敏化剂后, 两者即可顺利氧化为相应的取代苯甲酸和取代苯甲醛。通过荧光淬灭和共敏化剂联苯、无水盐高氯酸镁、O2捕获剂对苯二醌以及电子给体对二甲氧基苯等外加试剂对光氧化的影响讨论了反应历程。  相似文献   

8.
芳香族烯烃、芳烃以及稠环芳烃是光氧化反应中的重要研究对象.近来,Foote等对多苯基取代乙烯的光氧化进行了深入的研究并提出芳族烯烃可作为电子给体与氰基蒽等电子受体作用而经历电子转移(ET)光氧化过程,这一新进展已受到广泛重视.继之,Farid亦报道四氰蒽可以顺利进行敏化芳烃的ET型光氧化反应.不过在此前,Bartlett曾报道,带  相似文献   

9.
本文通过α,β-蒎烯及1,4-二苯基-1,3-丁二烯的9,10-二氰基蒽(DCA)敏化光氧化反应在一系列溶剂中产物生成的相对量子效率及单线态氧(1O2)产物的含量,对β-蒎烯在乙腈中的反应动力学分析,讨论了反应的溶剂效应,证明了DCA敏化光氧化反应,包括1O2产物都是经由电子转移的反应机理。  相似文献   

10.
1,4-二苯基-1,3-丁二烯的氰基蒽敏化光氧化反应   总被引:1,自引:0,他引:1  
某些不能与单线态氧(~1O_2)起反应的烯烃、炔烃、硫醚和环氧化合物,在以氰基蒽为敏化剂的条件下,可发生经由光敏电子转移机理的氧化反应.近年来,Santamaria 等,Foote 等和我们都在研究这类反应.本文报道以9,10-二氰基蒽(DCA)为敏化剂、反,反-1,4-二苯基-1,3-丁二烯为反应物的电子转移光敏氧化反应,并讨论了反应机理.  相似文献   

11.
江致勤  王延 《化学学报》1991,49(2):205-208
本文初次探讨赤霉酸甲酯的敏化光氧化反应规律及其在合成应用上的可能性。  相似文献   

12.
研究了苊酮(ANO)对9,10-二氰蒽(DCA)的荧光猝灭与激基络合物形成的动力学与机理。基于瞬态荧光双指数衰减,测定了激基络合物的光化学动力学和有关速度常数,论证荧光猝灭作用主要由ANO/DCA激基络合物的生成以及快速正向电子转移所致。  相似文献   

13.
Photooxygenations of PhSMe and Bu2S sensitized by N-methylquinolinium (NMQ+) and 9,10-dicyanoanthracene (DCA) in O2-saturated MeCN have been investigated by laser and steady-state photolysis. Laser photolysis experiments showed that excited NMQ+ promotes the efficient formation of sulfide radical cations with both substrates either in the presence or in absence of a cosensitizer (toluene). In contrast, excited DCA promotes the formation of radical ions with PhSMe, but not with Bu2S. To observe radical ions with the latter substrate, the presence of a cosensitizer (biphenyl) was necessary. With Bu2S, only the dimeric form of the radical cation, (Bu2S)2+*, was observed, while the absorptions of both PhSMe+* and (PhSMe)2+* were present in the PhSMe time-resolved spectra. The decay of the radical cations followed second-order kinetics, which in the presence of O2, was attributed to the reaction of the radical cation (presumably in the monomeric form) with O2-* generated in the reaction between NMQ* or DCA-* and O2. The fluorescence quenching of both NMQ+ and DCA was also investigated, and it was found that the fluorescence of the two sensitizers is efficiently quenched by both sulfides (rates controlled by diffusion) as well by O2 (kq = 5.9 x 10(9) M(-1) s(-1) with NMQ+ and 6.8 x 10(9) M(-1) s(-1) with DCA). It was also found that quenching of 1NMQ* by O2 led to the production of 1O2 in significant yield (PhiDelta = 0.86 in O2-saturated solutions) as already observed for 1DCA*. The steady-state photolysis experiments showed that the NMQ+- and DCA-sensitized photooxygenation of PhSMe afford exclusively the corresponding sulfoxide. A different situation holds for Bu2S: with NMQ+, the formation of Bu2SO was accompanied by that of small amounts of Bu2S2; with DCA, the formation of Bu2SO2 was also observed. It was conclusively shown that with both sensitizers, the photooxygenations of PhSMe occur by an electron transfer (ET) mechanism, as no sulfoxidation was observed in the presence of benzoquinone (BQ), which is a trap for O2-*, NMQ*, and DCA-*. BQ also suppressed the NMQ+-sensitized photooxygenation of Bu2S, but not that sensitized by DCA, indicating that the former is an ET process, whereas the second proceeds via singlet oxygen. In agreement with the latter conclusion, it was also found that the relative rate of the DCA-induced photooxygenation of Bu2S decreases by increasing the initial concentration of the substrate and is slowed by DABCO (an efficient singlet oxygen quencher). To shed light on the actual role of a persulfoxide intermediate also in ET photooxygenations, experiments in the presence of Ph2SO (a trap for the persulfoxide) were carried out. Cooxidation of Ph2SO to form Ph2SO2 was, however, observed only in the DCA-induced photooxygenation of Bu2S, in line with the singlet oxygen mechanism suggested for this reaction. No detectable amounts of Ph2SO2 were formed in the ET photooxygenations of PhSMe with both DCA and NMQ+ and of Bu2S with NMQ+. This finding, coupled with the observation that 1O2 and ET photooxygenations lead to different product distributions, makes it unlikely that, as currently believed, the two processes involve the same intermediate, i.e., a nucleophilic persulfoxide. Furthermore, the cooxidation of Ph2SO observed in the DCA-induced photooxygenation of Bu2S was drastically reduced when the reaction was performed in the presence of 0.5 M biphenyl as a cosensitizer, that is, under conditions where an (indirect) ET mechanism should operate. This observation confirms that a persulfoxide is formed in singlet oxygen but not in ET photosulfoxidations. The latter conclusion was further supported by the observation that also the intermediate formed in the reaction of thianthrene radical cation with KO2, a reaction which mimics step d (Scheme 2) in the ET mechanism of photooxygenation, is an electrophilic species, being able to oxidize Ph2S but not Ph2SO. It is thus proposed that the intermediate involved in ET sulfoxidations is a thiadioxirane, whose properties (it is an electrophilic species) seem more in line with the observed chemistry. Theoretical calculations concerning the reaction of a sulfide radical cation with O2-* provide a rationale for this proposal.  相似文献   

14.
β-大马烯酮和β-大马酮的光化学合成   总被引:2,自引:0,他引:2  
吴国生  胡军  吴碧琪  陈兆斌  王银章 《化学学报》1990,48(11):1113-1119
从同一个中间体合成β-大马烯酮(1)和β大马酮(2), 烯丙基β-环香叶醇的光氧化得双环氧化合物3.3的羰基用邻硝基苯基乙二醇保护, 还原, 光化学去保护和脱水得2,3的酸催化开环, 保护选择还原和光化学去保护得1. 首次观察到末端双键在光氧化时的环氧化。  相似文献   

15.
Steady-state and nanosecond laser flash photolysis measurements of 4-methoxybenzyl alcohol (1a), 4-methoxy-alpha-methylbenzyl alcohol (1b), 4,4'-dimethoxydiphenylmethanol (1c) and 4-methoxy-alpha,alpha'-dimethylbenzyl alcohol (1d) were carried out in air-equilibrated CH(2)Cl(2) and CH(3)CN solutions, in the presence of 9,10-dicyanoanthracene (DCA) and N-methylquinolinium tetrafluoroborate (NMQ(+)BF(4)(-)) as sensitizers. In particular, steady-state irradiation with DCA produced carbonyl compounds and, with NMQ(+)BF(4)(-), carbonyl compounds, ethers (substrates 1a-c ) and styrene (substrate 1d ) while time-resolved investigations gave evidence of charged species produced upon irradiation. The effect of solvent polarity on the reactivity was investigated; in the case of DCA, the reactivity increased with the solvent polarity, while the opposite was obtained when NMQ(+)BF(4)(-) was used. Quantum mechanical calculations at semiempirical (INDO/1-CI) and DFT (B3LYP/6-311G(d)) levels were used to support transient assignments and to obtain the charge and spin density distributions, respectively. The different photooxidation mechanisms operative with the neutral and charged sensitizer were rationalized in terms of the reactivity of free and complexed radical cations, respectively.  相似文献   

16.
The oxidation of diethyl and diphenyl sulfide photosensitized by dicyanoanthracene (DCA), N-methylquinolinium tetrafluoroborate (NMQ(+)), and triphenylpyrylium tetrafluoroborate (TPP(+)) has been explored by steady-state and laser flash photolysis studies in acetonitrile, methanol, and 1,2-dichloroethane. In the Et(2)S/DCA system sulfide-enhanced intersystem crossing leads to generation of (1)O(2), which eventually gives the sulfoxide via a persulfoxide; this mechanism plays no role with Ph(2)S, though enhanced formation of (3)DCA has been demonstrated. In all other cases an electron-transfer (ET) mechanism is involved. Electron-transfer sulfoxidation occurs with efficiency essentially independent of the sulfide structure, is subject to quenching by benzoquinone, and does not lead to Ph(2)SO cooxidation. Formation of the radical cations R(2)S(*+) has been assessed by flash photolysis (medium-dependent yield, dichloroethane>CH(3)CN>CH(3)OH) and confirmed by quenching with 1,4-dimethoxybenzene. Electron-transfer oxidations occur both when the superoxide anion is generated by the reduced sensitizer (DCA(*-), NMQ(*)) and when this is not the case (TPP(*)). Although it is possible that different mechanisms operate with different ET sensitizers, a plausible unitary mechanism can be proposed. This considers that reaction between R(2)S(*+) and O(2)(*-) mainly involves back electron transfer, whereas sulfoxidation results primarily from the reaction of the sulfide radical cation with molecular oxygen. Calculations indeed show that the initially formed fleeting complex RS(2)(+)...O-O(*) adds to a sulfide molecule and gives strongly stabilized R(2)S-O(*)-(+)O-SR(2) via an accessible transition state. This intermediate gives the sulfoxide, probably via a radical cation chain path. This mechanism explains the larger scope of ET sulfoxidation with respect to the singlet-oxygen process.  相似文献   

17.
本文报道了在竹红菌甲素的光敏氧化反应中, 原初反应产生了^1O2、O2和H2O2,在一些还原性底物(5-羟基色氨酸、色氨酸、组氨酸、蛋氨酸和赖氨酸等)的存在下, 体系中形成的O2量大大增加。证明了体系中的^1O2是通过三重态的竹红菌甲素和基态氧进行能量传递形成的, O2是体系中的竹红菌甲素负离子自由基和基态氧进行单电子转移的结果, H2O2是体系中存在的竹红菌甲素二价负离子还原基态氧的产物。在一些底物存在下, 次级反应产生了.OH。我们也发现竹红菌甲素具有弱的抽氢能力而生成一些有机自由基, 这些有机自由基的形成促进了各种活泼态氧的相互转化, 因此我们认为竹红甲素的光敏氧化是各种活泼态氧和一些有机自由基综合反应的结果。  相似文献   

18.
本文利用吸收光谱、荧光光谱和闪光光解研究了竹红菌甲素和色氨酸的相互作用.通过猝灭实验、氘代效应和溶剂效应探讨了竹红菌甲素敏化的色氨酸光氧化机制, 证明该反应是以单重态氧过程为主, 并辅以电子转移的机制. 另外, 考察了反应条件对反应的影响, 发现底物浓度、溶解氧浓度、溶剂的性质和溶液的PH值均对反应有很大的影响.  相似文献   

19.
竹红菌乙素与醇胺的作用   总被引:1,自引:0,他引:1  
竹红菌是在我国首次发现,并用于临床的一种新的光敏色素,可作为光动力治疗药物,对于许多皮肤病有显著疗效。最近还发现,竹红菌能选择性地富集于某些肿瘤细胞,并有效地抑制其生长。竹红菌素含有两种主要成份:竹红菌甲(HA)和竹红菌乙素(HB),它们都是茈醌类衍生物。本文对HB 和乙醇胺反应后得到的三种主要产物的光敏氧化蒽的相对速度和自敏光氧化相对速度进行了测试。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号