首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reflectance spectrophotometry from 420 to 780 nm on 31 primary melanoma and 31 benign nevi has been performed by using an external integrating sphere coupled to a spectrophotometer. Measurements show that reflectance spectra of melanoma and nevi manifest dissimilar patterns. From these spectra four variables, whose physical and/or physiological meanings remain to be investigated, have been derived. All of them are significantly different when compared between melanoma and nevi. A discriminant function between the two groups of lesions has been determined by using a stepwise discriminant analysis, resulting in a test with a sensitivity of 90.3% and a specificity of 77.4%. This method of discrimination between melanoma and nevi seems to have a discriminating power almost equal to that of a clinical judgement from a specialized medical doctor, thus suggesting a new method for screening skin pigmented lesions.  相似文献   

2.
Reflectance spectrophotometry from 400 to 800 nm on different cutaneous pigmented lesions, including primary and metastatic malignant melanoma, pigmented nevi, lentigo and seborrhoeic keratosis, has been performed by using an external integrating sphere coupled to a spectrophotometer. Measurements show that reflectance spectra of the different lesions manifest dissimilar patterns, particularly in the near IR region. Comparison of reflectance of nevi with that of malignant melanomas results in a highly significant difference (P less than 10(-6)) between the two samples. Though interpretation of the spectra remains difficult as a result of the complexity of the optical processes of scattering and absorption, our results suggest that a detailed analysis of the reflectance spectrum may give clinically useful information, and could be utilized as an aid in clinical diagnosis of cutaneous pigmented lesions, especially where malignant melanoma is concerned.  相似文献   

3.
We present an in vivo study of the optical properties of melanin present in melanocytic nevi of human subjects with Fitzpatrick skin type III (Caucasian descent) using optical spectroscopy. We show that the melanin absorption spectrum exhibits an exponential dependence on wavelength with a decay constant which follows a normal distribution characteristic of a random biological variable. Moreover, we demonstrate lack of correlation among melanin optical properties, melanin concentration and skin light scattering properties, which indicates that the true optical absorption of melanin can be measured free from confounding scattering effects. We also show that the average melanin absorption spectrum in vivo is in very good agreement with a previously reported oxygen photoconsumption action spectrum of melanin. Finally, we provide an overview of the emerging picture of the melanin absorption properties in vivo among various skin types and also among various skin lesions such as melanocytic nevi and melanoma.  相似文献   

4.
Fourier transform infrared (FTIR) microspectroscopy has been employed to investigate benign (ordinary dermal and Reed nevi), dysplastic and malignant (invasive melanoma) skin lesions through the analysis of spectral changes of melanocytes as well as in the evaluation of the presence of melanin. Hierarchical cluster analysis and principal component analysis led to a satisfactory separation of malignant from dysplastic and normal melanocytes. Also, on enlarging the clustering with spectra from Reed and dermal nevi, the multivariate analysis segregated well the spectral data into discrete clusters, allowing the obtaining of reliable average spectra for analysis at the molecular level of the main groups or components responsible for the biological and biochemical changes. The most significant spectral characteristics appear to be related to differences in secondary protein structures, in nucleic acid conformation, in intra- and intermolecular bonding. In all cases, supervised and unsupervised spectral analyses resulted in satisfactory agreement with histopathological findings.  相似文献   

5.
Melanin content and distribution in skin were studied by examining a patient with white, brown and blue skin tones expressed on skin affected by vitiligo. Both diffuse reflectance and autofluorescence spectra of the three distinction skin sites were measured and compared. Monte Carlo simulations were then performed to help explain the measured spectral differences. The modeling is based on a six-layer skin optical model established from published skin optical parameters and by adding melanin content into different locations in the model skin. Both the reflectance and fluorescence spectra calculated by Monte Carlo (MC) simulation were approximately in agreement with experimental results. The study suggests that: (1) trichrome vitiligo skin may be an ideal in vivo model for studying the effect of skin melanin content and distribution on skin spectroscopy properties. (2) Based on the skin optical model and MC simulation, the content and distribution of melanin in skin, or other component of skin could be simulated and predicted. (3) Both reflectance and fluorescence spectra provided information about superficial skin structures but fluorescence spectra are capable of providing information from deeper cutaneous structures. (4) The research method, including the spectral ratio method, the method of adding and modifying the melanin content in skin optical models, and MC simulation could be applied in other non-invasive optical studies of the skin.  相似文献   

6.
Knowledge of the optical properties of human skin in the ultraviolet range is fundamental for photobiologic research. However, optical properties of human skin in the ultraviolet spectral range have so far mainly been measured ex vivo . We have determined the absorption spectra of human skin in vivo in the wavelength range from 290 to 341 nm in 3 nm steps using laser optoacoustics. In this technique, optical properties are derived from the pressure profile generated by absorbed light energy in the sample. In a study on 20 subjects belonging to phototypes I–IV, we studied the optical properties at the volar and dorsal aspect of the forearm as well as on the thenar. Analysis of the measured absorption spectra shows that comparable skin areas—like different sides of the forearm—have qualitatively similar optical characteristics. Still, the optical properties may vary substantially within the same area, probably due to the skin structure and inhomogeneities. Comparison of the spectra from different skin sites indicates that the spectral characteristics of the stratum corneum and its chromophores play an important role for the optical properties of human skin in vivo in the ultraviolet B range.  相似文献   

7.
The in vivo reflectance spectra of Caucasian skin, coated with preparations containing sunscreen vehicle, vehicle with olive oil and vehicle with the UVB and UVA absorbers 2-ethylhexyl-4-methoxycinnamate and 4-t-butyl-4'-methoxydibenzoylmethane were determined. All preparations reduced the reflectance of skin throughout the UVA spectral range (320 to 400 nm), with the sunscreen preparations containing the UVB and UVB plus UVA absorbers reducing the reflectance more than the sunscreen vehicle alone. This phenomenon, which facilitates the penetration of UV radiation to the lower epidermis and dermal layers of skin and therefore lessens sunscreen efficacy, is attributed to optical coupling mediated by refractive index matching of the sunscreen to the upper epidermis. The greater reduction in skin diffuse reflectance caused by sunscreens containing methoxycinnamate is associated with this compound's high refractive index. Also, by determining the excitation spectra of the autofluorescence originating from the dermal layer of skin, the transmission spectra of the various components of sunscreen on skin were established, and these were in good general agreement with previously published spectra.  相似文献   

8.
We present measurements of reflectance spectra from human skin in vivo in the spectral range from 250 to 700 nm. These measurements show that the reflectance from strongly pigmented skin is higher than that from weakly pigmented skin at wavelengths shorter than approximately 300 nm. We simulate the measured results using a new radiative transfer model developed to study light propagation in skin tissue. Our simulations mimic the measured spectra when scattering from melanosomes, and fragmented melanosomes are taken into account. Scattering from microstructures with high relative refractive indices plays a major role in tissue optics. Our results show that scattering from melanosomes and fragmented melanosomes is of particular significance.  相似文献   

9.
Photobleaching kinetics of aminolevulinic acid-induced protoporphyrin IX (PpIX) were measured in the normal skin of rats in vivo using a technique in which fluorescence spectra were corrected for the effects of tissue optical properties in the emission spectral window through division by reflectance spectra acquired in the same geometry and wavelength interval and for changes in excitation wavelength optical properties using diffuse reflectance measured at the excitation wavelength. Loss of PpIX fluorescence was monitored during photodynamic therapy (PDT) performed using 514 nm irradiation. Bleaching in response to irradiances of 1, 5 and 100 mW cm-2 was evaluated. The results demonstrate an irradiance dependence to the rate of photobleaching vs irradiation fluence, with the lowest irradiance leading to the most efficient loss of fluorescence. The kinetics for the accumulation of the primary fluorescent photoproduct of PpIX also exhibit an irradiance dependence, with greater peak accumulation at higher irradiance. These findings are consistent with a predominantly oxygen-dependent photobleaching reaction mechanism in vivo, and they provide spectroscopic evidence that PDT delivered at low irradiance deposits greater photodynamic dose for a given irradiation fluence. We also observed an irradiance dependence to the appearance of a fluorescence emission peak near 620 nm, consistent with accumulation of uroporphyrin/coproporphyrin in response to mitochondrial damage.  相似文献   

10.
Skin cancer is the most prevalent cancer, and its assessment remains a challenge for physicians. This study reports the application of an optical sensing method, elastic scattering spectroscopy (ESS), coupled with a classifier that was developed with machine learning, to assist in the discrimination of skin lesions that are concerning for malignancy. The method requires no special skin preparation, is non‐invasive, easy to administer with minimal training, and allows rapid lesion classification. This novel approach was tested for all common forms of skin cancer. ESS spectra from a total of 1307 lesions were analyzed in a multi‐center, non‐randomized clinical trial. The classification algorithm was developed on a 950‐lesion training dataset, and its diagnostic performance was evaluated against a 357‐lesion testing dataset that was independent of the training dataset. The observed sensitivity was 100% (14/14) for melanoma and 94% (105/112) for non‐melanoma skin cancer. The overall observed specificity was 36% (84/231). ESS has potential, as an adjunctive assessment tool, to assist physicians to differentiate between common benign and malignant skin lesions.  相似文献   

11.
Reflectance spectroscopy usually produces distorted spectra because it is arbitrarily composed of two different types of reflectance, specular reflectance and diffuse reflectance. That is why this has been an annoying problem for reflectance spectroscopists. In this report, we studied the extraction of only the diffuse reflectance spectra from several reflectance spectra using redundant multiple spectral information, non-negative transformation of the recorded spectra and information processing as the multi-curve resolution. As a result, we found that we could estimate just the diffuse reflectance spectral profile.  相似文献   

12.
This paper presents results concerning optical and electrical properties of galena natural mineral and of the interface layer formed between it and the potassium ethyl xanthate solution. The applied experimental method was differential optical reflectance spectroscopy over the UV–Vis/NIR spectral domain. Computations were made using the Kramers–Kronig formalism. Spectral dependencies of the electron loss functions, determined from the reflectance data obtained from the polished mineral surface, display van Hove singularities, leading to the determination of its valence band gap and electron plasma energy. Time dependent measurement of the spectral dispersion of the relative reflectance of the film formed at the interface, using the same computational formalism, leads to the dynamical determination of the spectral variation of its optical and electrical properties. We computed behaviors of the dielectric constant (dielectric permittivity), the dielectric loss function, refractive index and extinction coefficient, effective valence number and of the electron loss functions. The measurements tend to stabilize when the dynamic adsorption-desorption equilibrium is reached at the interface level.  相似文献   

13.
Infrared spectroscopy is widely perceived as a future technology for cancer detection and grading. Malignant melanoma, an aggressive skin cancer, is accessible to non-invasive IR radiation based surface probes for its identification and grading. The present work examines the differences in the IR spectra of melanoma tissues and the surrounding epidermis in skin biopsies with the objective of identifying diagnostic parameters and suitable computational/statistical methods of analysis. Melanoma could be differentiated from the epidermis in biopsies of 55 patients, using parameters derived from absorbance bands originating from molecular vibrations of nucleic acids and/or their bases. Additionally, absorbances from tyrosine and phosphate that are abnormally elevated in malignant melanoma could be used as markers. Two-dimensional plots of these parameters in tandem with advanced statistical methods successfully demonstrate the potential of IR spectroscopy to distinguish between epidermal and melanoma regions with a high classification success. The work underlines the importance of developing data analysis methods in FTIR based diagnosis using melanoma as a model system.  相似文献   

14.
Immediate pigment darkening (IPD) occurs in human skin upon exposure to ultraviolet-A and visible radiation. The spectral changes that occur during IPD were measured with a rapid scanning reflectance spectrophotometer (RS) which employs optical fiber bundles for delivery and detection of light between 400 and 750 nm. The radiation dose dependence and wavelength dependence (334-549 nm irradiation) of IPD were studied by both the classical visual grading method and by spectrophotometric scoring using the RS system. The spectral changes that occur at long wavelengths with IPD mimic the natural absorption spectrum of melanin. Therefore, the IPD was scored in terms of the apparent change in melanin optical density, using the method Kollias and Baqer [Photochem. Photobiol. 43, 49-54 (1986)], based on reflectance in the 620-720 nm range. The nonlinearity of the visual grading method is demonstrated. The degree of IPD is first-order with respect to delivered dose and saturates after high doses. The maximum amount of IPD attained at saturation is greater for shorter wavelengths. Extrapolation of the reflectance data suggests the longest wavelength capable of eliciting IPD is about 470 nm.  相似文献   

15.
Abstract— Reflectance spectroscopy, which allows an objective evaluation of the color of surfaces, has recently been proposed as a useful tool to discriminate cutaneous melanoma from other pigmented cutaneous lesions. A novel spectrophotometric system based on the use of a charge coupled device camera provided with a set of interference filters has been developed to acquire images of cutaneous pigmented lesions at selected wavelengths ranging from 420 to 1040 nm. For each filter, an image was captured, digitized by a frame grabber and stored in a personal computer to perform off-line data handling. Reflectance images were acquired of 22 cutaneous pigmented lesions including melanoma and dysplastic, compound and junctional nevus. From each spectral image, three parameters, i.e. mean reflectance, variegation index and lesion area, were derived at the corresponding wavelength. The wavelength dependence of the three parameters was significantly different when melanoma was compared to the other investigated lesions. Although preliminary, our results suggest that telespectrophotometry gives useful information and could be utilized as an aid in the clinical diagnosis of cutaneous pigmented lesions.  相似文献   

16.
Malignant, fibroadenoma, normal and adipose breast tissues were studied using diffuse reflectance spectroscopy. The absorption spectra of the breast tissues were extracted from the diffuse reflectance spectra using the Kubelka-Munk function (K-M function). The spectral features of the K-M function were identified and compared with those of the absorption spectra. The spectral features of the K-M function were assigned to DNA, protein, beta-carotene and hemoglobin (oxygenated and deoxygenated) molecules in the breast tissue. The amplitudes of the K-M function averaged from 275 to 285 nm and from 255 to 265 nm and were found to be different for malignant, fibroadenoma and normal tissues. These differences were attributed to changes in proteins and DNA. A set of critical parameters was determined for separating malignant tissues from fibroadenoma and normal tissues. This approach should hold for other tissue types such as cervix, uterus and colon.  相似文献   

17.
An Animal Model for Human Melanoma   总被引:1,自引:0,他引:1  
Abstract— Experimental animal models that are directly relevant to human melanoma are lacking. We propose the Angora goat as a potentially useful field model with experimental potential and to this end have examined the prevalence and site distribution of all skin cancers in 28 Angora goat herds in Queensland, Australia. The prevalence of benign melanocytic lesions (lentigines) and their experimental induction by sunlight were also investigated. Among 1731 goats over 2 years of age, 139 malignant skin tumors were excised from 95 affected animals. The prevalence of squamous cell carcinoma (SCC) was 3.8% and of melanoma, 2.2%. Main site of occurrence of melanoma (83%) was the dorsal surface of the ear; in contrast SCC occurred mostly (84%) on the perineum. Lentigines were darker and more prevalent on the exposed compared with the unexposed surface of the ear in Angoras, analogous to the higher prevalence of nevi on the exposed compared with the less exposed inner surface of the arm in humans. Lentigines, which were also found on the perineum though lighter in color than on the dorsal ear, were absent in young animals under 3 months but were numerous in 1–3 year olds. Furthermore in an experimental substudy eight goats, having one flank repeatedly shorn and the contralateral flank left unshorn, revealed consistently more solar lentigines on the shorn flank ( P < 0.05) when both sides were examined after 9 months. Histopathological examination of paired skin biopsies from five of these goats also showed more abundant pigmentation in skin from the exposed, as compared with the unexposed flank. These findings indicate that sunlight induces tumors and lentigines in goats in a highly site-specific manner. The Angora goat model may suggest paradigms for explaining the site differences observed for human melanoma and may also be useful in the future clarification of molecular changes following carcinogenic levels of sun exposure.  相似文献   

18.
The present paper provides a spectral comparison between abdominal human skin (Transkin) and pig ear skin using confocal Raman microspectroscopy at 660 nm. Pig ear skin is usually utilized as a substitute for human skin for active ingredients assessment in dermatological and cosmetics fields. Herein, the comparison is made at the level of the stratum corneum (SC), the SC/epidermis junction and the viable epidermis. The 660 nm excitation source appears to be the most appropriate wavelength for such skin characterization. From Raman signatures of both skin types, a tentative assignment of vibrations was performed in the fingerprint and the high wavenumber spectral regions. Significant differences were highlighted for lipid content in in-depth spectra and for hyaluronic acid (HA) and carotenoid in SC spectra. Marked tissular variability was also revealed by certain Raman vibrations. These intrinsic molecular data probed by confocal Raman microspectroscopy have to be considered for further applications such as cutaneous drug permeation.  相似文献   

19.
Near infrared (NIR) spectroscopy has become a promising technique for the in vivo monitoring of glucose. Several capillary-rich locations in the body, such as the tongue, forearm, and finger, have been used to collect the in vivo spectra of blood glucose. For such an in vivo determination of blood glucose, collected NIR spectra often show some dependence on the measurement conditions and human body features at the location on which a probe touches. If NIR spectra collected for different oral glucose intake experiments, in which the skin of different patients and the measurement conditions may be quite different, are directly used, partial least squares (PLS) models built by using them would often show a large prediction error because of the differences in the skin of patients and the measurement conditions. In the present study, the NIR spectra in the range of 1300-1900 nm were measured by conveniently touching an optical fiber probe on the forearm skin with a system that was developed for in vivo measurements in our previous work. The spectra were calibrated to resolve the problem derived from the difference of patient skin and the measurement conditions by two proposed methods, inside mean centering and inside multiplicative signal correction (MSC). These two methods are different from the normal mean centering and normal multiplicative signal correction (MSC) that are usually performed to spectra in the calibration set, while inside mean centering and inside MSC are performed to the spectra in every oral glucose intake experiment. With this procedure, spectral variations resulted from the measurement conditions, and human body features will be reduced significantly. More than 3000 NIR spectra were collected during 68 oral glucose intake experiments, and calibrated. The development of PLS calibration models using the spectra show that the prediction errors can be greatly reduced. This is a potential chemometric technique with simplicity, rapidity and efficiency in the pretreatment of NIR spectra collected during oral glucose intake experiments.  相似文献   

20.
A spectral similarity measure was developed that can differentiate subtle differences between two spectra. The spectra are digitalized into a vector. The difference between the two spectra is defined by a difference vector, which is one spectrum minus the other. The spectral similarity measure is transformed into a hypothesis test of the similarities and differences between the two spectra. The scalar mean of the difference vector is used as the statistical variable for the hypothesis test. A threshold for the hypothesis that the spectra are different was proposed. The Bayesian prior odds ratio was estimated from multiple spectra of the same sample. The posterior odds ratio was used to quantity the spectral similarity measure of the two spectra. Diffuse reflectance near-infrared spectra of tobacco samples of two formulations were used to demonstrate this method. The results show that this new method can detect subtle differences between the spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号