首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetics and mechanism of sodium N-chloro-p-toluenesulfonamide oxidative decolorization of ethyl orange (EO) in aqueous perchloric acid have been studied at 303 K in the presence of rhodium(III) chloride as catalyst. The reaction exhibits first-order dependence on [EO]o and a fractional-order dependence on [CAT]o, [H+] and [RhIII]. The dielectric effect is positive. The stoichiometry of the reaction was found to be 1:1, and the oxidation products of EO were identified as N-(4-diethylamino-phenyl)-hydroxylamine and 4-nitroso-benzenesulfonic acid. The rhodium(III)-catalyzed reaction is about fourfold faster than the uncatalyzed reaction. The proposed mechanism and derived rate law are in agreement with the observed kinetic results.  相似文献   

2.
Ornidazole is an antiparasitic drug having a wide spectrum of activity. Literature survey has revealed that no attention has been paid towards the oxidation of ornidazole with any oxidant from the kinetic and mechanistic view point. Also no one has examined the role of platinum group metal ions as catalysts in the oxidation of this drug. Such studies are of much use in understanding the mechanistic profile of ornidazole in redox reactions and provide an insight into the interaction of metal ions with the substrate in biological systems. For these reasons, the Ru(III)- and Os(VIII)-catalyzed kinetics of oxidation of ornidazole with chloramine-T have been studied in HCl and NaOH media, respectively at 313 K. The oxidation products and kinetic patterns were found to be different in acid and alkaline media. Under comparable experimental conditions, in Ru(III)-catalyzed oxidation the rate law is −d[CAT]/dt = k [CAT]o[ornidazole]ox[H+]y[Ru(III)]z and it takes the form −d[CAT]/dt = k [CAT]o[ornidazole]ox[OH]y[Os(VIII)][ArSO2NH2]z for Os(VIII)-catalyzed reaction, where x, y and z are less than unity. In acid medium, 1-chloro-3-(2-methyl-5-nitroimidazole-1-yl)propan-2-one and in alkaline medium, 1-hydroxy-3-(2-methyl-5-nitroimidazole-1-yl)propan-2-one were characterized as the oxidation products of ornidazole by GC–MS analysis. The reactions were studied at different temperatures and the overall activation parameters have been computed. The solvent isotope effect was studied using D2O. Under identical set of experimental conditions, the kinetics of Ru(III) catalyzed oxidation of ornidazole by CAT in acid medium have been compared with uncatalyzed reactions. The relative rates revealed that the catalyzed reactions are about 5-fold faster whereas in Os(VIII) catalyzed reactions, it is around 9 times. The catalytic constant (KC) has been calculated for both the catalysts at different temperatures and activation parameters with respect to each catalyst have been evaluated. The observed experimental results have been explained by plausible mechanisms. Related rate laws have been worked out.  相似文献   

3.
The kinetics of oxidation of aliphatic amines viz., ethylamine, n-butylamine, isopropylamine (primary amines), diethylamine (secondary amine), and triethylamine (tertiary amine) by chloramine-T have been studied in NaOH medium catalyzed by osmium (VIII) and in perchloric acid medium with ruthenium(III) as catalyst. The order of reaction in [Chloramine-T] is always found to be unity. A zero order dependence of rate with respect to each [OH?] and [Amine] has been observed during the osmium(VIII) catalyzed oxidation of diethylamine and triethylamine while a retarding effect of [OH?] or [Amine] on the rate of oxidation is observed in case of osmium(VIII) catalyzed oxidation of primary aliphatic amines. The ruthenium(III) catalyzed oxidation of amines follow almost similar kinetics. The order of reactions in [Amine] or [Acid] decreases from unity at higher amine or acid concentrations. The rate of oxidation is proportional to {k′ and k″ [Ruthenium(III)] or [Osmium(VIII)]} where k′ and k″ (having different values in case of ruthenium(III) and osmium(VIII)) are the rate constants for uncatalyzed and catalyzed path respectively. The suitable mechanism consisting with the kinetic data is proposed in each case and discussed.  相似文献   

4.
The kinetics of oxidation of benzhydrol and its p-substituted derivatives (YBH, where Y=H, Cl, Br, NO2, CH3, and OCH3) by sodium N-chloro-p-toluenesulfonamide or chloramine-T (CAT), catalyzed by ruthenium(III) chloride, in the presence of hydrochloric acid in 30% (v/v) MeOH medium has been studied at 35°C. The reaction rate shows a first-order dependence on [CAT]O and a fractional-order each on [ YBH]O, [Ru(III)], and [H+]. The reaction also has a negative fractional-order (−0.35) behavior in the reduction product of CAT, p-toluenesulfonamide (PTS). The increase in MeOH content of the solvent medium retards the rate. The variation of ionic strength of the medium has negligible effect on the rate. Rate studies in D2O medium show that the solvent isotope effect, k′H2O/k′D2O, is equal to 0.60. Proton inventory studies have been made in H2O(SINGLEBOND)D2O mixtures. The rates correlate satisfactorily with Hammett σ relationship. The LFE relationship plot is biphasic and the reaction constant ρ=−2.3 for electron donating groups and ρ=−0.32 for electron withdrawing groups at 35°C. Activation parameters ΔH, ΔS, and ΔG have been calculated. The parameters, ΔH and ΔS, are linearly related with an isokinetic temperature β=334 K indicating enthalpy as a controlling factor. A mechanism consistent with the observed kinetics has been proposed. © 1997 John Wiley & Sons, Inc.  相似文献   

5.
Kinetics of oxidation of pantothenic acid (PA) by sodium N‐chloro‐p‐toluenesulfonamide or chloramine‐T (CAT) in the presence of HClO4 and NaOH (catalyzed by OsO4) has been investigated at 313 K. The stoichiometry and oxidation products are same in both media; however, their kinetic patterns were found to be different. In acid medium, the rate shows first‐order dependence on [CAT]o, fractional‐order dependence on [PA]o, and inverse fractional‐order on [H+]. In alkaline medium, the rate shows first‐order dependence each on [CAT]o and [PA]o and fractional‐order dependence on each of [OH?] and [OsO4]. Effects of added p‐toluenesulfonamide and halide ions, varying ionic strength, and dielectric constant of medium as well as solvent isotope on the rate of reaction have been investigated. Activation parameters were evaluated, and the reaction constants involved in the mechanisms have been computed. The proposed mechanisms and the derived rate laws are consistent with the observed kinetics. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 201–210, 2005  相似文献   

6.
p-Aminoazobenzene (PAAB) is one of the important monoazo dyes and its oxidation kinetic study is of much use in understanding the mechanistic profile of PAAB in redox reactions. Consequently, the kinetics of oxidation of PAAB by sodium N-chlorobenzenesulfonamide or chloramine-B (CAB) in HClO4 medium and in NaOH medium catalyzed by ruthenium(III) chloride (RuIII) have been investigated at 298 K. U.v.–vis spectrophotometry was used as a basic analytical approach in this study. Under an identical set of experimental conditions, the reactions of PAAB–CAB in HClO4 medium were facile, but the reactions became too slow to be studied in alkaline medium and hence ruthenium(III) chloride has been used as a catalyst in alkaline medium. The stoichiometry (1:2) and oxidation products (nitrosobenzene and p-nitrosoaniline) are the same in both media, but the kinetic and mechanistic patterns were found to be different. The experimental rate laws obtained are: − d[CAB]/dt = k [CAB]0 [PAAB]0 [H+] in acid medium and − d[CAB]0/dt = k [CAB]0 [PAAB]0[OH] x [RuIII] y in alkaline medium, where x and y are less than unity. The reaction was examined with reference to changes in (a) concentration of benzenesulfonamide, (b) concentration of added neutral salts, (c) ionic strength, (d) dielectric permitivity and (e) solvent isotope effect. The reaction was also studied at different temperatures and the overall activation parameters have been evaluated. The oxidation reaction fails to induce the polymerization of added acrylonitrile. C6H4SO2NHCl and C6H4SO2NCl have been postulated as the reactive oxidizing species in acidic and alkaline media, respectively. It was found that the reactions are nearly 20 times faster in acid medium in comparison with alkaline medium. It was also observed that ruthenium(III) was an efficient catalyst for the facile oxidation of PAAB by CAB in alkaline medium by making the reaction go twelve-fold faster than the uncatalyzed reactions. The catalytic constant (K C) has been calculated at different temperatures and the values of activation parameters with respect to ruthenium(III) have also been evaluated in alkaline medium. The observed results have been explained by plausible mechanisms and the relative rate laws have been deduced.  相似文献   

7.
Kinetics of uncatalyzed and Ru(III)-catalyzed oxidations of mono-, di-, and tri-chloroacetic acids by the title compound (bromamine-B or BAB) in HCl medium has been studied at 40°C. The uncatalyzed reaction shows a first-order dependence of the rate on [BAB], and fractional and zero orders in [acid] at low and high [HCl] ranges, respectively. The Ru(III)-catalyzed reaction, on the other hand, shows a first-order behavior on each of [BAB] and [substrate], second-order dependence on [Ru(III)], and inverse fractional and inverse first orders in [acid] at low and high [HCl] ranges. Addition of halide ions and the reduction product of BAB, benzenesulfonamide, has no effect on the reaction rate. Variation of ionic strength of the medium has no influence on the reaction. Solvent isotope effect was studied using D2O. Activation parameters have been evaluated from the Arrhenius plots. Mechanisms consistent with the above kinetic data have been proposed. The protonation constant of monobromamine-B evaluated from the uncatalyzed reaction is 12.4 while that evaluated from Ru(III) catalyzed reaction is 12.7. A Taft linear free-energy relationship is noted for the catalyzed reaction with ρ* = 1.2 and 0.07 indicating that electron withdrawing groups enhance the rate. An isokinetic relation is observed with β = 338 K indicating that enthalpy factors control the reaction rate. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
The oxidation of dl-ornithine monohydrochloride (OMH) by diperiodatocuprate(III) (DPC) has been investigated both in the absence and presence of ruthenium(III) catalyst in aqueous alkaline medium at a constant ionic strength of 0.20 mol dm−3 spectrophotometrically. The stiochiometry was same in both the cases, i.e., [OMH]/[DPC] = 1:4. In both the catalyzed and uncatalyzed reactions, the order of the reaction with respect to [DPC] was unity while the order with respect to [OMH] was < 1 over the concentration range studied. The rate increased with an increase in [OH] and decreased with an increase in [IO4] in both cases. The order with respect to [Ru(III)] was unity. The reaction rates revealed that Ru(III) catalyzed reaction was about eight-fold faster than the uncatalyzed reaction. The oxidation products were identified by spectral analysis. Suitable mechanisms were proposed. The reaction constants involved in the different steps of the reaction mechanisms were calculated for both cases. The catalytic constant (KC) was also calculated for catalyzed reaction at different temperatures. The activation parameters with respect to slow step of the mechanism and also the thermodynamic quantities were determined. Kinetic experiments suggest that [Cu(H2IO6)(H2O)2] is the reactive copper(III) species and [Ru(H2O)5OH]2+ is the reactive Ru(III) species.  相似文献   

9.
A detailed kinetic study of the Mn(II)-catalyzed and -uncatalyzed oxidation of pinacol by bromate has been carried out in aqueous acetic acid media containing Hg(II) ions. The uncatalyzed reaction exhibits 1.5 order that is, 0.5 order in [pinacol] and 1.0 in [bromate]. A decrease in k1 by increasing [bromate] has been accounted for due to the formation of Br2O5, which is inactive toward reduction. Mn(II)-catalyzed oxidation follows first order in [oxidant], 0.5 order in [manganous ion], and variable order with respect to [pinacol]. At lower [pinacol] (0.005–0.025M) the order is 0.5, but at higher concentration (0.03–0.15M) it becomes negative (?1.0). These observations can be accounted for qualitatively by the formation of 1:1 and 1:2 Mn(II)–pinacol complexes of which only 1:1 is active toward bromate oxidation. At higher [pinacol] the ratio of 1:2 and 1:1 complexes reached 98.2. All reactions were accelerated with acidity, and the rate constant follows the h0 function. Participation of H2O in the rate-limiting step and a free-radical mechanism were proposed for the manganous-ion-catalyzed reaction, whereas for the uncatalyzed reaction this was not true. The effects of NaClO4, Na4P2O7, and the dielectric constant of the media are also in accordance with the proposed mechanism.  相似文献   

10.
A kinetic study of uncatalyzed and Ru(III) catalyzed oxidation of indigo carmine(IC) (disodium 3,3′-dioxobi-indolin-2,2′-ylidene-5,5′-disulphonate) by iodate ion in aqueous sulphuric acid solution is reported. The uncatalyzed reaction order was found to be four; one each with respect to IC and iodate ion and second order with H+ ion. The Ru(III) catalyzed reaction was of fifth order, second order with respect to H+ and first order with respect to reductant, oxidant, and catalyst. Stoichiometric ratios of both reactions were the same with a 3:2 reductant-oxidant ratio. In both uncatalyzed and catalyzed reactions isatin-5-monosulphonic acid (2,3-dioxoindoline-5-sulphonic acid) was observed as the oxidation product. Rate constants for both the reactions are reported. Reaction mechanisms consistent with the experimental data are suggested. Further, a fixed time method is described for the determination of Ru(III), based on its ability to catalyze the oxidation of IC by acidic iodate. Using [H+] 2.25M, [iodate] 1.00 × 10?3M and [IC] 5.0 × 10?5M, in presence of Ru(III), the reaction followed first order kinetics with respect to IC. The interference of various cations, neutral salts, and potassium iodide on the determination of Ru(III) was studied using synthetic mixtures. The selectivity of the method and the recommended procedure are described.  相似文献   

11.
Kinetics of oxidation of L-aspartic acid and L-glutamic acid by manganese(III) ions have been studied in aqueous sulphuric acid, acetic acid, and pyrophosphate media. Manganese(III) solutions were prepared by known electrolytic/chemical methods in the three media. The nature of the oxidizing species present in manganese(III) solutions was determined by spectrophotometric and redox potential measurements. The reaction shows a variable order in [manganese(III)]o: the order changes from two to one as the reactive oxidizing species changes from an aquo ionic form to a complex form. There is a first-order dependence of the rate on [amino acid]o in all the three media while the other common features include an inverse dependence each on [H+] and on [manganese(II)]. Effects of varying ionic strength and solvent composition were studied. Added anions such as pyrophosphate, fluoride, or chloride alter the reaction rate and mechanism by changing the formal redox potential of Mn(III)-Mn(II) couple. Activation parameters have been evaluated using the Arrhenius and Eyring plots. Mechanisms consistent with the kinetic data have been proposed and discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
New six-coordinate ruthenium(III) Schiff-base complexes of general formula [Ru(X)(PPh3)(L)] (where X = Cl/Br and L = mononucleating bibasic tetradentate ligand derived by condensing actetoacetanilide/acetoacetotoludide with o-aminophenol/o-aminothiophenol/o-aminobenzoic acid in 1 : 2 molar ratio in ethanol) have been synthesized and characterized by physico-chemical and spectroscopic methods. The new ruthenium(III) complexes possess 2NO/2NS metal binding sites and are catalysts for the oxidation of alcohols using molecular oxygen as co-oxidant and in C–C coupling reactions. These complexes possess good biocidal (antibacterial and antifungal) activity.  相似文献   

13.
14.
The reaction of the Schiff bases (obtained by condensing isatin with o‐aminophenol/o‐aminothiophenol/o‐aminobenzoic acid) with [RuX3(EPh3)3] (where X = Cl/Br; E = P/As) in benzene afforded new, air‐stable Ru(III) complexes of the general formula [Ru(L)X(EPh3)2] (L = dianion of tridentate Schiff bases). In all these reactions, the Schiff base ligand replaces one triphenylphosphine/triphenylarsine and two chlorides/bromides from the ruthenium precursors. The complexes were characterized by elemental analyses, spectral (FT–IR, UV–vis, 1H and 13C NMR for the ligands, and EPR) and electrochemical studies. All the metal complexes exhibit characteristic LMCT absorption bands in the visible region. The catalytic reactivity proved these complexes to be efficient catalysts in the oxidation of alcohols and C? C coupling. All the complexes were screened for their biocidal efficiency against bacteria such as Staphylococcus epidermidis and Escherichia coli and fungi such as Botrytis cinerea and Aspergillus niger at 0.25, 0.50 and 1% concentrations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Ruthenium(III) complex catalyzed oxidation of aliphatic amines with bromamine-T under alkaline condition proceeds efficiently to afford carboxylic acids in high conversion. Hexa-coordinated ruthenium(III) complex of the type [RuCl2(PPh3)(L)] (L, tridentate ligand derived by the condensation of o-phenylene diamine with salicylaldehyde) has been synthesized and it was used as a catalyst for the oxidative conversion of amines to carboxylic acids. The detailed mechanistic and kinetic investigations have been made for the oxidation reactions. Under similar experimental conditions all the amines proceed with a common oxidation mechanism and follows an identical kinetics with first-order dependence each on [Oxidant]o and [Amine]o, and fractional order with respect to [Catalyst] and [OH]. To understand the detailed kinetics and mechanism of the reactions, the reactions have been subjected to changes in (i) dielectric permittivity, (ii) primary salt effect, (iii) halide ions and (v) temperature. The reactions were carried out at different temperature and the activation parameters have been calculated. From enthalpy–entropy relationships and Exner correlations, the isokinetic temperature (β) of 382 K, calculated is much higher than the experimental temperature (313 K), indicating that, the enthalpy factor controls the rate. The observed results have been explained by a plausible mechanism and the related rate law has been deduced. The present method developed for the oxidation of amines to carboxylic acids by bromamine-T offers several advantages including high conversion, short reaction times, and stable, cost effective and relatively non-toxic reagents which make the reaction process simple and smooth.  相似文献   

16.
The kinetics of the oxidation of five catecholamines viz., dopamine (A), L-dopa (B), methyldopa (C), epinephrine (D) and norepinephrine (E) by sodium N-chloro-p-toluenesulfonamide or chloramine-T (CAT) in presence of HClO4 was studied at 30±0.1 °C. The five reactions followed identical kinetics with a first-order dependence on [CAT] o , fractional-order in [substrate] o , and inverse fractional-order in [H+]. Under comparable experimental conditions, the rate of oxidation of catecholamines increases in the order D>E>A>B>C. The variation of ionic strength of the medium and the addition of p-toluenesulfonamide or halide ions had no significant effect on the reaction rate. The rate increased with decreasing dielectric constant of the medium. The solvent isotope effect was studied using D2O. A Michaelis-Menten type mechanism has been suggested to explain the results. Equilibrium and decomposition constants for CAT-catecholamine complexes have been evaluated. CH3C6H4SO2NHCl of the oxidant has been postulated as the reactive oxidizing species and oxidation products were identified. An isokinetic relationship is observed with β=361 K, indicating that enthalpy factors control the reaction rate. The mechanism proposed and the derived rate law are consistent with the observed kinetics.  相似文献   

17.
Summary The oxidation of -hydroxy acids (HA), viz. glycolic acid (GA), mandelic acid (MA) and lactic acid (LA), by pyridinium chlorochromate (PCC) in aqueous ethanoic acid solution was investigated in the presence and absence of RuIIICl3. The order in [HA] and [PCC] was found to be unity, with or without ruthenium(III) catalyst, and the order in [RuIII] was found also to be unity. The reaction was acid catalysed also in the presence and absence of ruthenium(III) catalyst, and hence the protonated form of PCC, was assumed to be the active species of oxidant. Added salts, and the change in dielectric constant of the medium, did not affect the oxidation rate. No induced polymerization occurred when acrylamide monomer was added to the reaction mixture. The pseudo-first order rate constants (k the formation constants (K f) of the substrate-catalyst complexes, activation and thermodynamic parameters have been evaluated. Suitable mechanisms in conformity with the experimental observations have been proposed for the uncatalysed and catalysed reactions.  相似文献   

18.
The kinetics of a triarylmethane dye, brilliant green (BG), by sodium N-chloro-p-toluenesulfonamide or chloramine-T (CAT) was studied spectrophotometrically in HClO4 media at 303 K. Under identical experimental conditions, the rate law was ?d [BG]/dt = k [BG] [H+]. Variations in ionic strength (μ) of the medium had no effect on the oxidation velocity. Addition of p-toluenesulfonamide, the reduction product of CAT and Cl?, had no significant effect on the rate of reaction. The values of rate constants observed at five different temperatures (298, 303, 308, 313, and 318 K) were utilized to calculate the activation parameters. The observed results have been explained by a general mechanism and the related rate law has been obtained. The process demonstrated in this study is cost effective, which holds great promise in potential application for pollutant control.  相似文献   

19.
The oxidation of amitriptyline by potassium permanganate has been investigated spectrophotometrically in the presence of ruthenium(III) as catalyst in aqueous acidic medium at a constant ionic strength of 0.20 mol⋅dm−3. The stoichiometry was found to be 1:1 in terms of the mole ratio of amitriptyline and permanganate ions consumed. The order of the reaction with respect to manganese(VII) and ruthenium(III) concentration was unity while the order with respect to amitriptyline was less than unity over the concentration range studied. The rate increased with an increase in acid concentration. The reaction rates revealed that the Ru(III) catalyzed reaction was about eight-fold faster than the uncatalyzed reaction. The oxidation products were identified by spectral analysis. A tentative mechanism consistent with the kinetics has been proposed. The reaction constants involved in the different steps of the reaction mechanism were calculated. Kinetic experiments suggest that HMnO4 is the reactive permanganate species and [Ru(H2O)6]3+ is the reactive Ru(III) species.  相似文献   

20.
The kinetics of oxidation of arginine, histidine, and threonine by chloramine-T (CAT) have been investigated in alkaline medium at 35°C. The rates are first order in both [CAT] and [amino acid] and inverse fractional order in [OH?] for arginine and histidine. The rate is independent of [OH?] for threonine. Variation of ionic strength and addition of the reaction product, p-toluenesulfonamide, or Cl? ions had no effect on the rate. A decrease of the dielectric constant of the medium by adding methanol decreased the rate with arginine, while the rates increased with histidine and threonine. The solvent isotope effect was studied using D2O. (kobs)/(kobs) was found to be 0.55 and 0.79 for arginine and histidine, respectively. The reactions were studied at different temperatures, and activation parameters have been computed. The oxidation process in alkaline medium, under conditions employed in the present investigations, has been shown to proceed via two paths, one involving the interaction of RNHCl (formed rapidly from RNCl?), with the amino acid in a slow step to form monochloroamino acid, which subsequently interacts with another molecule of RNHCl in a fast step to give the products, p-toluenesulfonamide (RNH2), and the corresponding nitrile of the amino acid (R'CN). The other path involves the interaction of RNCl? with the amino acid in a similar way to give RNH2 and R'CN. Mechanisms proposed and the derived rate laws are consistent with the observed kinetics. The rate constants predicted using the derived rate laws, as [OH?] varies, are in excellent agreement with the observed rate constants, thus justifying these rate laws and hence the proposed mechanistic schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号