首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
本文通过异苯并二氢吡喃酮-4的克莱森缩合反应得β-二酮衍生物,并由此合成出一系列标题化合物。所合成的新杂环化合物均经核磁共振光谱,红外光谱及无素分析证明其分子结构。  相似文献   

2.
二氢茉莉酮酸甲酯是非常重要的人工合成香料,其合成方法是有机合成工作者研究的重点。以2-戊基-2-环戊烯-1-酮为原料,经Michael加成/脱甲氧羰基合成二氢茉莉酮酸甲酯是常用的合成路线。本文着重对脱甲氧羰基步骤进行了优化。尝试加入卤盐以降低该反应温度,发现盐的加入导致逆Michael加成产物的生成,致使产率较低。又研究了将Michael加成产物单水解然后脱羧的方法,该方法不仅降低了反应温度,而且使用更易处理的DMF为反应溶剂,经两步反应以85%的产率得到二氢茉莉酮酸甲酯。  相似文献   

3.
在HIV-1整合酶(IN)和5CITEP复合物晶体结构的基础上, 用分子对接程序(Affinity)将含有单Mg2+和双Mg2+ 的HIV-1 IN核心区与抑制剂5CITEP进行对接, 获得了能形成复合物结构的理论模型. 通过配体与受体之间的相互作用能和结构分析给出此种抑制剂的结合模式, 并与晶体结构进行比较, 揭示出引入的第二个Mg2+原子在整合过程中所起的重要作用. 前后相互作用能的变化趋势很明显, 配体和受体的作用模式比单Mg2+体系更加清晰. 由单Mg2+体系的4种作用方式改变到双Mg2+体系的两种作用方式, 相互作用能提高了将近40 kJ/mol. 为基于整合酶结构的药物设计提供了参考信息.  相似文献   

4.
两种苯并二氢吡喃-4-酮衍生物的合成   总被引:1,自引:0,他引:1  
单绍军  杜振媚 《化学通报》2008,71(6):443-445
分别以间甲氧基苯酚与间苯二酚为原料,经过3步合成了(E)-7-甲氧基-3(4-甲氧基苯哑甲基)与(E)-7-羟基-3-(3',4',5'-三甲氧基苯哑甲基)取代的苯并二氢吡喃-4-酮.合成路线简单,易于操作,两者的最终收率分别为20.1%和15.3%.  相似文献   

5.
1,3-二氢苯并[c]异噻唑2,2-二氧化物是常见的药物骨架,本文以邻氯氯苄和亚硫酸钠为原料,经亲核取代、酰氯化、酰胺化及偶联环化反应,以55%的总收率和99%的纯度合成了1,3-二氢苯并[c]异噻唑2,2-二氧化物,其结构经1H NMR, 13C NMR和FT-IR确证。  相似文献   

6.
用分子对接方法研究HIV-1整合酶与病毒DNA的结合模式   总被引:2,自引:0,他引:2  
用分子对接方法研究了HIV-1整合酶(Integrase, IN)二聚体与3’ 端加工(3’ Processing, 3’-P)前的8 bp及27 bp病毒DNA的相互作用, 并获得IN与27 bp病毒DNA的特异性结合模式. 模拟结果表明, IN有特异性DNA结合区和非特异性DNA结合区; IN二聚体B链的K14, R20, K156, K159, K160, K186, K188, R199和A链的K219, W243, K244, R262, R263是IN结合病毒DNA的关键残基; 并从结构上解释了能使IN发挥活性的病毒DNA的最小长度是15 bp. 通过分析结合能发现, IN与DNA稳定结合的主要因素是非极性相互作用, 而关键残基与病毒DNA相互识别主要依赖于极性相互作用. 模拟结果与实验数据较吻合.  相似文献   

7.
酸性离子交换树脂催化合成二氢香豆素类化合物   总被引:1,自引:0,他引:1  
黄雁  林永成 《有机化学》2004,24(11):1451-1453
以强酸性离子交换树脂为催化剂,由间苯三酚与丙烯酸或取代丙烯酸反应合成了3个二氢香豆素和1个四氢苯并二吡喃酮类化合物,其中5-羟基-3,4,6,7-四氢苯并[1,2-b;5,4-b']二吡喃-2,8-二酮(2a)和3-甲基-5,7-二二羟基-3,4-二氢香豆素(1b)还未见文献报道.取代丙烯酸的反应活性低于丙烯酸,使用甲苯-四氢呋喃混合溶剂代替甲苯单一溶剂可使2a的产率由20%提高到66%.  相似文献   

8.
2-取代芳基苯并[b]呋喃类化合物的合成   总被引:3,自引:1,他引:3  
以4-取代苯乙炔化亚铜与3-甲氧基-4-羟基-5-溴肉桂酸甲酯为原料进行缩合反应得到2-取代芳基并[b]呋喃, 并将其衍生化, 得到14个2-芳基-5-烷基-7-甲氧基苯并[b]呋喃化合物, 并确证了其结构.  相似文献   

9.
二氢苯莉酮酸甲酯的简便合成方法   总被引:1,自引:0,他引:1  
周景尧  林国妹  孙伟  孙菁 《有机化学》1985,5(6):490-493
  相似文献   

10.
柳林  李凡超  陈学刚 《合成化学》2019,27(2):98-103
采用苯并二吡咯酮作电子受体单元,在钯催化下,与不同取代基修饰的电子给体单元苯并二噻吩进行Stille偶联聚合反应,合成了两种新型的电子给受体(D-A)聚合物(P1和P2),其结构和性能经UV-Vis, 1H NMR, 13C NMR,元素分析,GPC, CV和TGA表征。结果表明:薄膜态P1和P2在300~800 nm表现出较强吸。P1和P2的低能端吸收峰值分别位于621 nm和616 nm。氧化峰分别位于0.41 V和0.46 V,能隙分别为1.41 eV和1.36 eV。  相似文献   

11.
A series of novel menthol derivatives containing 1,2,4-triazole-thioether moiety were designed, synthesized, characterized structurally, and evaluated biologically to explore more potent natural product-based antifungal agents. The bioassay results revealed that at 50 μg/mL, some of the target compounds exhibited good inhibitory activity against the tested fungi, especially against Physalospora piricola. Compounds 5b (R = o-CH3 Ph), 5i (R = o-Cl Ph), 5v (R = m,p-OCH3 Ph) and 5x (R = α-furyl) had inhibition rates of 93.3%, 79.4%, and 79.4%, respectively, against P. piricola, much better than that of the positive control chlorothalonil. Compounds 5v (R = m,p-OCH3 Ph) and 5g (R = o-Cl Ph) held inhibition rates of 82.4% and 86.5% against Cercospora arachidicola and Gibberella zeae, respectively, much better than that of the commercial fungicide chlorothalonil. Compound 5b (R = o-CH3 Ph) displayed antifungal activity of 90.5% and 83.8%, respectively, against Colleterichum orbicalare and Fusarium oxysporum f. sp. cucumerinum. Compounds 5m (R = o-I Ph) had inhibition rates of 88.6%, 80.0%, and 88.0%, respectively, against F. oxysporum f. sp. cucumerinu, Bipolaris maydis and C. orbiculare. Furthermore, compound 5b (R = o-CH3 Ph) showed the best and broad-spectrum antifungal activity against all the tested fungi. To design more effective antifungal compounds against P. piricola, 3D-QSAR analysis was performed using the CoMFA method, and a reasonable 3D-QSAR model (r2 = 0.991, q2 = 0.514) was established. The simulative binding pattern of the target compounds with cytochrome P450 14α-sterol demethylase (CYP51) was investigated by molecular docking.  相似文献   

12.
A variety of structurally different pyrimidines were synthesized. Elemental analysis, FT-IR, 1H NMR, and 13C NMR spectroscopy were used to confirm the chemical structures of all prepared compounds. The synthesized pyrimidines were screened against the growth of five human cancer cell lines (prostate carcinoma PC3, liver carcinoma HepG-2, human colon cancer HCT-116, human breast cancer MCF-7, human lung cancer A-549), and normal human lung fibroblasts (MRC-5) using MTT assay. Most of the screened pyrimidines have anti-proliferative activity on the growth of the PC3 cell line. Compounds 3b and 3d were more potent than the reference vinblastine sulfate (~2 to 3 × fold) and they can be considered promising leads for treating prostate cancer disease. Moreover, the screened compounds 3b, 3f, 3g, 3h, and 5 were assessed according to the values of their selectivity index (SI) and were found to be more selective and safer than vinblastine sulfate. Furthermore, using in silico computational tools, the physicochemical properties of all pyrimidine ligands were assessed, and the synthesized compounds fall within the criteria of RO5, thus having the potential to be orally bioavailable.  相似文献   

13.
One-step direct unimolar valeroylation of methyl α-D-galactopyranoside (MDG) mainly furnished the corresponding 6-O-valeroate. However, DMAP catalyzed a similar reaction that produced 2,6-di-O-valeroate and 6-O-valeroate, with the reactivity sequence as 6-OH > 2-OH > 3-OH,4-OH. To obtain novel antimicrobial agents, 6-O- and 2,6-di-O-valeroate were converted into several 2,3,4-tri-O- and 3,4-di-O-acyl esters, respectively, with other acylating agents in good yields. The PASS activity spectra along with in vitro antimicrobial evaluation clearly indicated that these MDG esters had better antifungal activities than antibacterial agents. To rationalize higher antifungal potentiality, molecular docking was conducted with sterol 14α-demethylase (PDB ID: 4UYL, Aspergillus fumigatus), which clearly supported the in vitro antifungal results. In particular, MDG ester 7–12 showed higher binding energy than the antifungal drug, fluconazole. Additionally, these compounds were found to have more promising binding energy with the SARS-CoV-2 main protease (6LU7) than tetracycline, fluconazole, and native inhibitor N3. Detailed investigation of Ki values, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and the drug-likeness profile indicated that most of these compounds satisfy the drug-likeness evaluation, bioavailability, and safety tests, and hence, these synthetic novel MDG esters could be new antifungal and antiviral drugs.  相似文献   

14.
A series of novel calix[4]arene derivatives incorporating two triazolyl 1 3-diketo subunits in alternate positions at the lower rim were synthesized and screened for HⅣ integrase inhibition activity.The chemical structures of these compounds were confirmed by means of1H NMR 13C NMR,and ESI-MS.Preliminary bioassays indicated that calix[4]arene derivatives proved to be more active than p-tertbutylcalix[4]arene derivatives.In particular,compound 4g presented the most potent integrase strand transfer inhibitory activity with an IC50value of 6.1 mmol/L.  相似文献   

15.
A series of methyl β-D-galactopyranoside (MGP, 1) analogs were selectively acylated with cinnamoyl chloride in anhydrous N,N-dimethylformamide/triethylamine to yield 6-O-substitution products, which was subsequently converted into 2,3,4-tri-O-acyl analogs with different acyl halides. Analysis of the physicochemical, elemental, and spectroscopic data of these analogs revealed their chemical structures. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) showed promising antifungal functionality comparing to their antibacterial activities. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) tests were conducted for four compounds (4, 5, 6, and 9) based on their activity. MTT assay showed low antiproliferative activity of compound 9 against Ehrlich’s ascites carcinoma (EAC) cells with an IC50 value of 2961.06 µg/mL. Density functional theory (DFT) was used to calculate the thermodynamic and physicochemical properties whereas molecular docking identified potential inhibitors of the SARS-CoV-2 main protease (6Y84). A 150-ns molecular dynamics simulation study revealed the stable conformation and binding patterns in a stimulating environment. In-silico ADMET study suggested all the designed molecules to be non-carcinogenic, with low aquatic and non-aquatic toxicity. In summary, all these antimicrobial, anticancer and in silico studies revealed that newly synthesized MGP analogs possess promising antiviral activity, to serve as a therapeutic target for COVID-19.  相似文献   

16.
先导化合物的发现在药物研究中起关键作用。基于分子对接的虚拟筛选是创新药物研究的新方法和新技术,已成为一种与高通量筛选互补的方法,广泛应用于先导化合物的发现中。本文将结合本课题组的研究实例,综述了通过计算机虚拟筛选、化学合成和生物测试相结合的方法来发现先导化合物的一些研究工作。  相似文献   

17.
Pyridine, 1,3,4-thiadiazole, and 1,3-thiazole derivatives have various biological activities, such as antimicrobial, analgesic, anticonvulsant, and antitubercular, as well as other anticipated biological properties, including anticancer activity. The starting 1-(3-cyano-4,6-dimethyl-2-oxopyridin-1(2H)-yl)-3-phenylthiourea (2) was prepared and reacted with various hydrazonoyl halides 3a–h, α-haloketones 5a–d, 3-chloropentane-2,4-dione 7a and ethyl 2-chloro-3-oxobutanoate 7b, which afforded the 3-aryl-5-substituted 1,3,4-thiadiazoles 4a–h, 3-phenyl-4-arylthiazoles 6a–d and the 4-methyl-3- phenyl-5-substituted thiazoles 8a,b, respectively. The structures of the synthesized products were confirmed by spectral data. All of the compounds also showed remarkable anticancer activity against the cell line of human colon carcinoma (HTC-116) as well as hepatocellular carcinoma (HepG-2) compared with the Harmine as a reference under in vitro condition. 1,3,4-Thiadiazole 4h was found to be most promising and an excellent performer against both cancer cell lines (IC50 = 2.03 ± 0.72 and 2.17 ± 0.83 µM, respectively), better than the reference drug (IC50 = 2.40 ± 0.12 and 2.54 ± 0.82 µM, respectively). In order to check the binding modes of the above thiadiazole derivatives, molecular docking studies were performed that established a binding site with EGFR TK.  相似文献   

18.
趋化因子CCR2参与炎症反应、免疫移植排斥和肿瘤的发生,已成为新的研究热点。本文以CCR5的晶体结构为模板,同源模建CCR2的结构,并用CCR2小分子抑制剂与其进行分子对接以得到小分子的最优构象。在对接叠合的基础上建立了QSAR模型,采用比较分子场分析(Co MFA)以及比较分子相似性分析(Co MSIA)研究得到Co MFA和Co MSIA模型最佳评价参数分别为q2=0.743,r2=0.968和q2=0.68,r2=0.978。3D-QSAR模型的等势图分析表明,改造配体R3基团可提高化合物活性。所建模型稳定性好、预测性强,对基于CCR2的小分子抑制剂的设计、优化和改造提供了参考。  相似文献   

19.
2-azido-1H-benzo[d]imidazole derivatives 1a,b were reacted with a β-ketoester such as acetylacetone in the presence of sodium ethoxide to obtain the desired molecules 2a,b. The latter acted as a key molecule for the synthesis of new carbazone derivatives 4a,b that were submitted to react with 2-oxo-N-phenyl-2-(phenylamino)acetohydrazonoyl chloride to obtain the target thiadiazole derivatives 6a,b. The structures of the newly synthesized compounds were inferred from correct spectral and microanalytical data. Moreover, the newly prepared compounds were subjected to molecular docking studies with DNA gyrase B and exhibited binding energy that extended from −9.8 to −6.4 kcal/mol, which confirmed their excellent potency. The compounds 6a,b were found to be with the minimum binding energy (−9.7 and −9.8 kcal/mol) as compared to the standard drug ciprofloxacin (−7.4 kcal/mol) against the target enzyme DNA gyrase B. In addition, the newly synthesized compounds were also examined and screened for their in vitro antimicrobial activity against pathogenic microorganisms Staphylococcus aureus, E. coli, Pseudomonas aeruginosa, Aspergillus niger, and Candida albicans. Among the newly synthesized molecules, significant antimicrobial activity against all the tested microorganisms was obtained for the compounds 6a,b. The in silico and in vitro findings showed that compounds 6a,b were the most active against bacterial strains, and could serve as potential antimicrobial agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号