首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Highly oriented VO2(B), VO2(B) + V6O13 films were grown on indium tin oxide glass by radio-frequency magnetron sputtering. Single phase V6O13 films were obtained from VO2(B) +V6O13 films by annealing at 480℃ in vacuum. The vanadium oxide films were characterized by x-ray diffraction and x-ray photoelectron spectra (XPS). It was found that the formation of vanadium oxide films was affected by substrate temperature and annealing time, because high substrate temperature and annealing were favourable to further oxidation. Therefore, the formation of high valance vanadium oxide films was realized. The V6O13 crystalline sizes become smaller with the increase of annealing time. XPS analysis revealed that the energy position for all the samples was almost constant, but the broadening of the V2p3/2 line of the annealed sample was due to the smaller crystal size of V6O13.  相似文献   

2.
Indium tin oxide (ITO) thin films prepared by the sol–gel method have been deposited by the dip-coating process on silica substrates. CO2 laser is used for annealing treatments. The electrical resistivity of sol–gel-derived ITO thin films decreased following crystallization after exposure to CO2 laser beam. The topological and electrical properties of the irradiated surfaces have been demonstrated to be strongly related to the coating solution and to the laser processing parameters. Optimal results have been obtained for 5 dip-coating layers film from 0.4 mol/l solution irradiated by 0.6 W/m2 laser power density. In this case, homogeneous and optically transparent traces were obtained with a measured sheet resistance of 1.46×102 Ω/□.  相似文献   

3.
To improve the electrical properties of as-deposited BZ1T9 ferroelectric thin films, the supercritical carbon dioxide fluid (SCF) process were used by a low temperature treatment. In this study, the BZ1T9 ferroelectric thin films were post-treated by SCF process which mixed with propyl alcohol and pure H2O. After SCF process treatment, the remnant polarization increased in hysteresis curves, and the passivation of oxygen vacancy and defect in leakage current density curves were found. Additionally, the improvement qualities of as-deposited BZ1T9 thin films after SCF process treatment were carried out XPS, CV, and JE measurements.  相似文献   

4.
Highly transparent N-doped ZnO thin films were deposited on ITO coated corning glass substrate by sol–gel method. Ammonium nitrate was used as a dopant source of N with varying the doping concentration 0, 0.5, 1.0, 2.0 and 3.0 at%. The DSC analysis of prepared NZO sols is observed a phase transition at 150 °C. X-ray diffraction pattern showed the preferred (002) peak of ZnO, which was deteriorated with increased N concentrations. The transmittance of NZO thin films was observed to be ~88%. The bandgap of NZO thin films increased from 3.28 to 3.70 eV with increased N concentration from 0 to 3 at%. The maximum carrier concentration 8.36×1017 cm−3 and minimum resistivity 1.64 Ω cm was observed for 3 at% N doped ZnO thin films deposited on glass substrate. These highly transparent ZnO thin films can be used as a window layer in solar cells and optoelectronic devices.  相似文献   

5.
《Current Applied Physics》2019,19(12):1383-1390
To investigate the effect of indium-tin-oxide (ITO) electrode on the Al-doped HfO2 (Al:HfO2) ferroelectric thin films, we fabricated and characterized the ITO/Al:HfO2/ITO and ITO/Al:HfO2/TiN capacitors by changing the annealing conditions. The ferroelectric remnant polarization (2Pr) was obtained to be 13.25 μC/cm2 for the ITO/Al:HfO2/TiN capacitors with the post-deposition annealing, which was termed T1. The 2Pr decreased after the post-metallization annealing due to the interface degradation between the Al:HfO2 and ITO electrode. Alternatively, the switching time and activation field of the T1 for the ferroelectric polarization switching were 1.25 μs and 1.15 MV/cm. These parameters were sensitively influenced by the interfacial dead layer formation and the amounts of ferroelectric orthorhombic phase. Furthermore, the fatigue endurance of the T1 were improved by preventing the crowding of oxygen vacancies at interfaces between the Al:HfO2 and top electrodes, in which the polarization values did not experience marked variations even after the fatigue cycles of 108.  相似文献   

6.
AlTiN films with different nitrogen partial pressures were deposited using arc ion plating (AIP) technique. In this study, we systematically investigated the effect of the nitrogen partial pressure on composition, deposition efficiency, microstructure, macroparticles (MPs), hardness and adhesion strength of the AlTiN films. The results showed that with increasing the nitrogen partial pressure, the deposition rate exhibited a maximum at 1.2 Pa. Results of X-ray photoelectron spectroscopy (XPS) analysis revealed that AlTiN films were comprised of Ti–N and Al–N bonds. XRD results showed that the films exhibited a (1 1 1) preferred growth, and AlTi3N and TiAlx phases were observed in the film deposited at 1.7 Pa. Analysis of MPs statistics showed MPs decreased with the increase in the nitrogen partial pressure. In addition, the film deposited at 1.2 Pa possessed the maximum hardness of 38 GPa and the better adhesion strength.  相似文献   

7.
8.
The adsorption characteristics of Cs on GaN(0001) and GaN(000) surfaces with a coverage from 1/4 to 1 monolayer have been investigated using the density functional theory with a plane-wave ultrasoft pseudopotential method based on first-principles calculations.The results show that the most stable position of the Cs adatom on the GaN(0001) surface is at the N-bridge site for 1/4 monolayer coverage.As the coverage of Cs atoms at the N-bridge site is increased,the adsorption energy reduces.As the Cs atoms achieve saturation,the adsorption is no longer stable when the coverage is 3/4 monolayer.The work function achieves its minimum value when the Cs adatom coverage is 2/4 monolayer,and then rises with Cs atomic coverage.The most stable position of Cs adatoms on the GaN(000) surface is at H3 site for 1/4 monolayer coverage.As the Cs atomic coverage at H3 site is increased,the adsorption energy reduces,and the adsorption is still stable when the Cs adatom coverage is 1 monolayer.The work function reduces persistently,and does not rise with the increase of Cs coverage.  相似文献   

9.
Design of polymer anti-reflective (AR) optical coatings for plastic substrates is challenging because polymers exhibit a relatively narrow range of refractive indices. Here, we report synthesis of a four-layer AR stack using hybrid polymer:nanoparticle materials deposited by resonant infrared matrix-assisted pulsed laser evaporation. An Er:YAG laser ablated frozen solutions of a high-index composite containing TiO2 nanoparticles and poly(methyl-methacrylate) (PMMA), alternating with a layer of PMMA. The optimized AR coatings, with thicknesses calculated using commercial software, yielded a coating for polycarbonate with transmission over 97 %, scattering <3 %, and a reflection coefficient below 0.5 % across the visible range, with a much smaller number of layers than would be predicted by a standard thin film calculation. The TiO2 nanoparticles contribute more to the enhanced refractive index of the high-index layers than can be accounted for by an effective medium model of the nanocomposite.  相似文献   

10.
The Al–Ti–N films deposited by multi-arc ion plating have been annealed in vacuum within the range of 700–1100 °C. X-ray diffraction results showed that the structure of the films underwent the formation of coherent c-TiN and c-AlN for the annealing temperatures were up to 900 °C. A new phase AlTix (x = 0.50, 0.56, 3) was observed after annealing. The X-ray photoelectron spectroscopy results showed the intensity of Ti–Al bonds decreased as annealing temperatures increased, indicating the decomposition of (Al, Ti)N into c-TiN and c-AlN were at the expense of Ti–Al bonds. Differential scanning calorimetry experiments were used to investigate the dynamic behavior of the films during annealing process and the results showed that the N2 formed as a consequence of the phase transformation process. The release of the N2 resulted in the peeling of the films from the substrates. The film exhibited a maximum hardness of 39 GPa after 900 °C annealing due to the formation of coherent c-TiN and c-AlN phases. In addition, we also investigated the influence of vacuum annealing on adhesive strength.  相似文献   

11.
Tantalum (Ta) and nitrogen-contained tantalum (Ta–N) thin films are sputter deposited on Si-based substrates with and without a titanium adhesion layer. The impact of varying the nitrogen flow rate and the underlying titanium on the phase formation process is investigated using X-ray diffraction analysis, resistivity measurement and scanning electron microscopy. Our results indicate that the titanium layer inhibits the formation of high-resistivity tetragonal β-Ta, and leads to the deposition of low-resistivity cubic α-Ta arising from its epitaxial orientation on the underlying titanium. Consequently, the electrical properties and microstructures of the Ta-based films are significantly changed.  相似文献   

12.
A mass of GaN nanowires has been successfully synthesized on Si(111) substrates by magnetron sputtering through ammoniating Ga2O3/Co films at 950℃. X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscope and Fourier transformed infrared spectra are used to characterize the samples. The results demonstrate that the nanowires are of single-crystal GaN with a hexagonal wurtzite structure and possess relatively smooth surfaces. The growth mechanism of GaN nanowires is also discussed.  相似文献   

13.
The indium–tin oxide(ITO) film as the antireflection layer and front electrodes is of key importance to obtaining high efficiency Si heterojunction(HJ) solar cells. To obtain high transmittance and low resistivity ITO films by direct-current(DC) magnetron sputtering, we studied the impacts of the ITO film deposition conditions, such as the oxygen flow rate,pressure, and sputter power, on the electrical and optical properties of the ITO films. ITO films of resistivity of 4×10-4?·m and average transmittance of 89% in the wavelength range of 380–780 nm were obtained under the optimized conditions:oxygen flow rate of 0.1 sccm, pressure of 0.8 Pa, and sputtering power of 110 W. These ITO films were used to fabricate the single-side HJ solar cell without an intrinsic a-Si:H layer. However, the best HJ solar cell was fabricated with a lower sputtering power of 95 W, which had an efficiency of 11.47%, an open circuit voltage(V oc) of 0.626 V, a filling factor(FF) of 0.50, and a short circuit current density(J sc) of 36.4 m A/cm2. The decrease in the performance of the solar cell fabricated with high sputtering power of 110 W is attributed to the ion bombardment to the emitter. The V oc was improved to 0.673 V when a 5 nm thick intrinsic a-Si:H layer was inserted between the(p) a-Si:H and(n) c-Si layer. The higher V oc of 0.673 V for the single-side HJ solar cell implies the excellent c-Si surface passivation by a-Si:H.  相似文献   

14.
Surface states that have a dz2 symmetry around the center of the surface Brillouin zone(BZ)have been regarded common in closely-packed surfaces of rare-earth metals.In this work,we report the electronic structure of dhcp La(0001)thin films by ultrahigh energy resolution angle-resolved photoemission spectroscopy(ARPES)and first principle calculations.Our first principle analysis is based on the many-body approach,therefore,density function theory(DFT)combined with dynamic mean-field theory(DMFT).The experimentally observed Fermi surface topology and band structure close to the Fermi energy qualitatively agree with first principle calculations when using a renormalization factor of between 2 and 3 for the DFT bands.Photon energy dependent ARPES measurements revealed clear kZ dependence for the hole-like band around the BZ center,previously regarded as a surface state.The obtained ARPES results and theoretical calculations suggest that the major bands of dhcp La(0001)near the Fermi level originate from the bulk La 5d orbits as opposed to originating from the surface states.  相似文献   

15.
We report the reduced-strain gallium-nitride (GaN) epitaxial growth on (0001) oriented sapphire by using quasiporous GaN template. A GaN film in thickness of about 1 μm was initially grown on a (0001) sapphire substrate by molecular beam epitaxy. Then it was dealt by putting into 45% NaOH solution at 100℃ for lOmin. By this process a quasi-porous GaN film was formed. An epitaxial GaN layer was grown on the porous GaN layer at 1050℃ in the hydride vapour phase epitaxy reactor. The epitaxial layer grown on the porous GaN is found to have no cracks on the surface. That is much improved from many cracks on the surface of the GaN epitaxial layer grown on the sapphire as the same as on GaN buffer directly.  相似文献   

16.
The influence of oxygen partial pressure on the optical properties of NiOx thin films deposited by reactive DC-magnetron sputtering from a nickel metal target in a mixture gas of oxygen and argon was presented. With the oxygen ratio increasing, the reflectivity of the as-deposited films decreased, and optical band gap increased. Thermogravimetric analysis (TGA) showed that the decompose temperature of the films was above 250℃. After annealed at 400℃, only films deposited at 5% O2/Ar ratio showed high optical contrast which was about 52%. Scanning electron microscope (SEM) results revealed that the changes of surface morphology were responsible for the optical property variations of the films after annealing. Its thermal stability and high optical contrast before and after annealing made it a good potential write-once optical recording medium.  相似文献   

17.
K. Saito  K. Ichioka  S. Sugawara 《哲学杂志》2013,93(30):3629-3641
Thin films of Al–Ni–Co alloy with an average thickness of 15?nm were produced by means of conventional vacuum deposition technique on (0001) sapphire substrates heated at various test temperatures. The microstructures and textures of the films obtained were thoroughly investigated by atomic force microscopy, X-ray diffraction and transmission electron diffraction and imaging techniques. The diffraction measurements have evidenced that the vacuum deposition of Al72Ni15Co13 alloy on the substrates heated above 400°C allows a homogeneous poly-quasicrystalline film, consisting of the Ni-rich basic decagonal phase to grow. It has been further indicated by in-plane XRD analysis that the film deposited at 550°C contains a considerable amount of the decagonal grains epitaxially grown on the sapphire substrate. Possible epitaxial relations occurring between the deposit and the substrate will be detailed on the basis of results obtained from electron diffraction measurements.  相似文献   

18.
Silicon oxide films have been investigated extensively due to their important applications in both micro-electronic and optical technologies because of their excellent elec- trical and optical properties[1-5]. SiO2 films can be de- posited by magnetron sputtering[4-5], ion beam sputter- ing (IBS)[6], chemical vapor deposition (CVD)[7-9], and so on. Magnetron sputtering technique is capable of mak- ing dense amorphous films with very good repeatability and is widely used in optical coating in…  相似文献   

19.
This paper reports the synthesis and characterization of nanocrystalline tin oxide (SnO2) powders by a simple method using a chitosan–polymer complex solution. To obtain SnO2 nanocrystalline powders, the precursor was calcined at 500–600 °C in air for 2 h. The phase composition of calcined samples was studied by X-ray diffraction (XRD). The XRD results confirmed the formation of a SnO2 phase with tetragonal structure. The particle sizes of the powder were found to be 22–23 nm as evaluated by the XRD line broadening method. TEM investigation revealed that the SnO2 samples consist of crystalline particles of 19–21 nm. The corresponding selected area electron diffraction analysis further confirmed the formation of the tetragonal structure of SnO2 without any impurity phases. The optical properties of the samples were explored by Fourier transform infrared spectroscopy, optical absorption and Raman studies. The estimated band gaps of the samples were in the range of 3.44–3.73 eV.  相似文献   

20.
In this work, a method based on scanning Kelvin probe microscopy is proposed to separately extract source/drain(S/D) series resistance in operating amorphous indium–gallium–zinc–oxide(a-IGZO) thin-film transistors. The asymmetry behavior of S/D contact resistance is deduced and the underlying physics is discussed. The present results suggest that the asymmetry of S/D contact resistance is caused by the difference in bias conditions of the Schottky-like junction at the contact interface induced by the parasitic reaction between contact metal and a-IGZO. The overall contact resistance should be determined by both the bulk channel resistance of the contact region and the interface properties of the metalsemiconductor junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号