首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study reports 5 years of (1998-2003) data on continuous solar-irradiation measurements from a scanning spectroradiometer (SUV-100) in Valdivia, Chile (39 degrees S), accompanied by evaluation of the impact of ultraviolet radiation (UVR) on marine macroalgae of this site. UVR conditions showed a strong seasonal variation, which was less pronounced toward longer wavelengths. Daily maximum dose rates (clear days) averaged in winter-summer: UV-B(290-315 nm) 0.30-2.1, UV-B(290-320 nm) 0.70-3.7, UV-A(315-400 nm) 20.6-62.1, UV-A(320-400 nm) 20.2-60.5 W m(-2), and photosynthetically active radiation (PAR) 969-2423 micromol m(-2) s(-1). The corresponding daily doses (all the days) ranged: UV-B(290-315 nm) 2.6-40.7, UV-B(290-320 nm) 6.7-78.5, UV-A(315-400 nm) 228-1539, UV-A(320-400 nm) 224-1501, and PAR 2008-13308 kJ m(-2) d(-1). Taking into consideration action spectra of a biological interest, the risk of UV exposure could be up to 37 times higher in summer than in winter. The photosynthetic activity (as maximum quantum yield of chlorophyll fluorescence, F(v)/F(m)) of the brown alga Lessonia nigrescens from the infralittoral zone was markedly more sensitive to UVR than of the green alga Enteromorpha intestinalis from the upper midlittoral, and the UV-B wave band increased markedly photoinhibition. In L. nigrescens, maximal photoinhibition (40%) took place at weighted (the action spectrum for photoinhibition of photosynthesis) UVR doses of 800 kJ m(-2), irrespective of the season (corresponding midsummer daily dose in Valdivia is 480 kJ m(-2)). In winter, when this alga was at its most sensitive, the weighted UV dose causing 35-40% photoinhibition was around 200 kJ m(-2). In E. intestinalis, weighted doses of 800 kJ m(-2) resulted in low photoinhibition (<10 %) and no clear seasonal patterns could be inferred. These results confirm that midday summer levels of UV-B and their daily doses in southern Chile are high enough to produce stress to intertidal macroalgae.  相似文献   

2.
Three filamentous and heterocystous cyanobacterial strains of Nodularia, Nodularia baltica, Nodularia harveyana and Nodularia spumigena, have been tested for the presence and induction of ultraviolet-absorbing/screening mycosporine-like amino acids (MAAs) by simulated solar radiation in combination with 395 (receiving photosynthetically active radiation (PAR) only), 320 (receiving PAR + UV-A) and 295 (receiving PAR + UV-A + UV-B) nm cut-off filters. Absorption spectroscopic analyses of the methanolic extracts of samples revealed a typical MAA peak at 334 nm in all three cyanobacteria. Specific contents of MAAs had a pronounced induction in the samples covered with 295 nm cut-off filters after 72 h of irradiation. In comparison, there was little induction of MAAs in the samples covered by 395 and 320 nm cut-off filters. High performance liquid chromatographic (HPLC) studies revealed the presence of two types of MAAs in all three cyanobacteria, which were identified as shinorine and porphyra-334, both absorbing maximally at 334 nm. The occurrence of porphyra-334 is rare in cyanobacteria. Specific content of both shinorine and porphyra-334 were induced remarkably only in the samples covered with 295 nm cut-off filters. The results indicate that in comparison to UV-A and PAR, UV-B is more effective in eliciting MAAs induction in the studied cyanobacteria.  相似文献   

3.
Plectonema boryanum UTEX 485 cells were grown at 29 degrees C and 150 mumol m-2 s-1 photosynthetically active radiation (PAR) and exposed to PAR combined with ultraviolet-A radiation (UV-A) at 15 degrees C. This induced a time-dependent inhibition of photosystem II (PSII) photochemistry measured as a decrease of the chlorophyll a fluorescence ratio, Fv/Fm, to 50% after 2 h of UV-A treatment compared to nontreated control cells. Exposure of the same cells to PAR combined with UV-A + ultraviolet-B radiation (UV-B) caused only a 30% inhibition of PSII photochemistry relative to nontreated cells. In contrast, UV-A and UV-A + UV-B irradiation of cells cultured at 15 degrees C and 150 mumol m-2 s-1 had minimal effects on the Fv/Fm values. However, cells grown at 15 degrees C and lower PAR irradiance (6 mumol m-2 s-1) exhibited similar inhibition patterns of PSII photochemistry as control cells. The decreased sensitivity of PSII photochemistry of P. boryanum grown at 15 degrees C and 150 mumol m-2 s-1 to subsequent exposure to UV radiation relative to either control cells or cells grown at low temperature but low irradiance was correlated with the following: (1) a reduced efficiency of energy transfer to PSII reaction centers; (2) higher levels of a carotenoid tentatively identified as myxoxanthophyll; (3) the accumulation of scytonemin and mycosporine amino acids; and (4) the accumulation of ATP-dependent caseinolytic proteases. Thus, acclimation of P. boryanum at low temperature and moderate irradiance appears to confer significant resistance to UV-induced photoinhibition of PSII. The role of excitation pressure in the induction of this resistance to UV radiation is discussed.  相似文献   

4.
In this work, mycosporine-like amino acids (MAAs) of Synechocystis sp. PCC 6803 were characterized and were investigated on UV induction and protective ability. High performance liquid chromatographic (HPLC) studies revealed three major compounds in the MAAs. By UV absorption and mass spectra analysis, one of the compounds was tentatively identified as mycosporine-tau (M-tau). One novel compound similar to usujirene was tentatively named as dehydroxylusujirene, and the other novel compound was named as M-343 according to its absorption maximum. In vivo experiments indicated that M-tau was induced by both UV-A and UV-B, while dehydroxylusujirene and M-343 were only induced by UV-A, suggesting that different chromophores were involved in MAAs synthesis in Synechocystis sp. PCC 6803. It was also indicated that M-343 could be photochemically synthesized from some precursors. Under both UV and oxidation stresses, M-343 was more stable than dehydroxylusujirene and M-tau. Considering the reaction with H2O2, M-tau and dehydroxylusujirene might be potential antioxidants in reaction with physiological reactive oxygen species in vivo. In protection experiments, the MAAs exhibited efficient protective ability towards UV-B and H2O2 stresses, with maximal protection rates of 30% and 21.5%, respectively. These results indicate that the MAAs in Synechocystis sp. PCC 6803 act as both UV-screen and antioxidant.  相似文献   

5.
Laboratory tests confirmed a negative and variable response of the following four species to artificial UV radiation: Cypridopsis vidua, an ostracode; Chironomus riparius, a midge larvae; Hyalella azteca, an amphipod; and Daphnia magna, a daphnid. Severe damage occurred at UV-B irradiance ranging from 50 to 80% of incident summer values. Under constant exposure to UV and photosynthetically active radiation (PAR) the acute lethal response was recorded at 0.3, 0.8, 0.8 and 4.9 W m-2 UV-B for D. magna, H. azteca, C. riparius and C. vidua, respectively. Sublethal UV-B damage to invertebrates included impaired movement, partial paralysis, changes in pigmentation and altered water balance (bloating). A series of UV-B, UV-A and PAR treatments, applied separately and in combination, revealed a positive role for both UV-A and PAR in slowing down UV-B damage. Mean lethal concentration values of the species typically more tolerant to UV and PAR (Cypridopsis, Chironomus) decreased conspicuously when both UV-A and PAR were eliminated. For UV-B-sensitive species (Hyalella, Daphnia) these differences were notably smaller. We suggest that this gradation of sensitivity among the tested species demonstrates potential differences in repairing mechanisms which seem to work more efficiently for ostracodes and chironomids than for amphipods and daphnids. Manipulations with a cellulose acetate filter showed that lower range UV-B (280-290 nm), produced by FS-40 lamps, may cause excessive UV damage to invertebrates.  相似文献   

6.
Three filamentous and heterocystous N2-fixing cyanobacteria, Anabaena sp., Nostoc commune and Scytonema sp. were tested for the presence of ultraviolet-absorbing mycosporine-like amino acids (MAAs) and their induction by solar ultraviolet-B (UV-B) radiation. High performance liquid chromatographic (HPLC) studies revealed the presence of only one type of MAAs in all three cyanobacteria, that was identified as shinorine, a bisubstituted MAA containing both glycine and serine groups having an absorption maximum at 334 nm and a retention time of around 2.8 min. There was a circadian induction in the synthesis of MAAs when the cultures were exposed to mid-latitude solar radiation (Playa Unión, Rawson, Chubut, Patagonia, Argentina) for 3 days, 4–6th February, 2000. Solar radiation was measured by an ELDONET (European Light Dosimeter Network) filter radiometer permanently installed on the roof of the Estación de Fotobiología Playa Unión (43°18′ S; 65°03′ W). The maximum irradiances were around 450–500, 45–50 and 1.0–1.2 W m−2 for PAR (photosynthetic active radiation), UV-A (ultraviolet-A) and UV-B (ultraviolet-B), respectively. PAR and UV-A had no significant impact on MAA induction while UV-B induced the synthesis of shinorine in all three cyanobacteria. Shinorine was found to be induced mostly during the light period. During the dark period the concentration stayed almost constant. In addition to shinorine, another unidentified, water-soluble, brownish compound with an absorption maximum at 315 nm was found to be induced by UV-B only in Scytonema sp. and released into the medium. This substance was neither found in Anabaena sp. nor in Nostoc commune. Judging from the results, the studied cyanobacteria may protect themselves from deleterious short wavelength radiation by their ability to synthesize photoprotective compounds in response to UV-B radiation.  相似文献   

7.
The role of photosynthetically active radiation (400-700 nm) (PAR) in modifying plant sensitivity and photomorphogenic responses to ultraviolet-B (280-320 nm) (UV-B) radiation has been examined by a number of investigators, but few studies have been conducted on ultraviolet-A (320-400 nm) (UV-A), UV-B and PAR interactions. High ratios of PAR-UV-B and UV-A-UV-B have been found to be important in ameliorating UV-B damage in both terrestrial and aquatic plants. Growth chamber and greenhouse studies conducted at low PAR, low UV-A and high UV-B often show exaggerated UV-B damage. Spectral balance of PAR, UV-A and UV-B has also been shown to be important in determining plant sensitivity in field studies. In general, one observes a reduction in total biomass and plant height with decreasing PAR and increasing UV-B. The protective effects of high PAR against elevated UV-B may also be indirect, by increasing leaf thickness and the concentration of flavonoids and other phenolic compounds known to be important in UV screening. The quality of PAR is also important, with blue light, together with UV-A radiation, playing a key role in photorepair of DNA lesions. Further studies are needed to determine the interactions of UV-A, UV-B and PAR.  相似文献   

8.
The effects of increased UV radiation (UV-B [280-320 nm] + UV-A [320-400 nm]; hereafter UVR) on the growth, production of photosynthetic pigments and photoprotective mycosporine-like amino acids (MAAs) were studied in the threatened Caribbean coral Acropora cervicornis transplanted from 20 to 1 m depth in La Parguera, Puerto Rico. The UVR exposure by the transplanted colonies was significantly higher than that at 20 m, while photosynthetically active radiation (PAR) only increased by 9%. Photosynthetic pigments, quantified with HPLC, as well as linear extension rates and skeletal densities, were significantly reduced 1 month after transplantation to 1 m depth, while MAAs increased significantly despite immediate paling experienced by transplanted colonies. While these colonies showed a significant reduction in photosynthetic pigments, there were no significant reductions in zooxanthellae densities suggesting photoacclimation of the coral's symbionts to the new radiation conditions. The results suggest that while corals might be able to survive sudden increases in UVR and PAR, their skeletal structure can be greatly debilitated due to a reduction in the photosynthetic capacity of their symbionts and a possible relocation of resources.  相似文献   

9.
Photosynthetic performance was measured on site in four common Atlantic green algae, Asparagopsis taxiforme, Valonia utricularia, Caulerpa racemosa and Codium taylori, in Gran Canaria, Canary Islands. The photosynthetic quantum yield was determined with a portable PAM instrument and with a diving PAM in the water column. Solar radiation was measured continuously above and in the water column by means of two three-channel dosimeters, ELDONET (Real Time Computer, M?hrendorf, Germany), in the UV-A, UV-B and PAR ranges. The effective photosynthetic quantum yield was found to be affected by exposure to solar radiation in as short as 15 min but recovered in the shade in most species within several hours. Only A. taxiforme failed to recover completely, and a 30-min exposure caused severe photoinhibition from which the algae recovered only partially. While most of the effect was due to the PAR wavelength range, the UV, and especially the UV-B, range considerably enhanced photoinhibition. In all four species, a significant inhibition was found even at their growth sites in the water column, measured with the diving PAM, at high solar angles.  相似文献   

10.
Radiation damage can inter alia result in lipid peroxidation of macroalgal cell membranes. To prevent photo-oxidation within the cells, photoprotective substances such as phlorotannins are synthesized. In the present study, changes in total fatty acids (FA), FA composition and intra/extracellular phlorotannin contents were determined by gas chromatography and the Folin-Ciocalteu method to investigate the photoprotective potential of phlorotannins to prevent lipid peroxidation. Alaria esculenta juveniles (Phaeophyceae) were exposed over 20 days to high/low photosynthetically active radiation (PAR) in combination with UV radiation (UVR) in the treatments: PAB (low/high PAR + UV-B + UV-A), PA (low/high PAR + UV-A) or low/high PAR only. While extracellular phlorotannins increased after 10 days, intracellular phlorotannins increased with exposure time and PA and decreased under PAB. Interactive effects of time:radiation wavebands, time:PAR dose as well as radiation wavebands:PAR dose were observed. Low FA contents were detected in the PA and PAB treatments; interactive effects were observed between time:high PAR and PAB:high PAR. Total FA contents were correlated to extra/intracellular phlorotannin contents. Our results suggest that phlorotannins might play a role in intra/extracellular protection by absorption and oxidation processes. Changes in FA content/composition upon UVR and high PAR might be considered as an adaptive mechanism of the A. esculenta juveniles subjected to variations in solar irradiance.  相似文献   

11.
The synthesis or accumulation of mycosporine-like amino acids (MAAs) is an important UV tolerance mechanism in aquatic organisms. To investigate the wavelength dependence of MAA synthesis in the marine dinoflagellate Gyrodinium dorsum, the organism was exposed to polychromatic radiation (PAR and UV) from a solar simulator for up to 72 h. Different irradiance spectra were produced by inserting various cut-off filters between lamp and samples. A polychromatic action spectrum for the synthesis of MAA synthesis was constructed. PAR and long wavelength UV-A radiation showed almost no effect while the most effective wavelength range was around 310 nm. Shorter wavelengths where less effective in the induction of MAA synthesis. Wavelengths below 300 nm damaged the organisms severely as indicated by a decrease in chlorophyll a absorption.  相似文献   

12.
This study examines the effects of natural solar radiation on the metal-binding capacity of dissolved organic matter (DOM). Newington Bog water (35.5 mg L−1 dissolved organic carbon [DOC]) was irradiated for 20 days under UV-B lamps in the laboratory and under natural solar radiation. In the presence of irradiated DOM, IC50 (contaminant concentration required to reduce algal growth by 50%) was significantly decreased with UV-B treatment for four metals: Pb, 64%; Cu, 63%; Ni, 35% and Cd, 40%. Solar radiation also significantly decreased IC50 of Pb (58%) and Cu (49%), DOC concentration (11%), DOM fluorescence (DOMFL, 33%) and DOC-specific UV absorbance. Further experiments on Raisin River water (20.7 mg DOC L−1) exposed to 20 days of artificial UVA and UV-B radiation produced significant decreases in IC50 for Cu (48%) with UV-A and for Pb (43%) with UV-B. DOC concentration was decreased 20% by UV-B and 24% by UV-A. DOMFL decreased 51.5% in the first 5 days of UV-A exposure, an effect that was not observed with the UV-B treatment. The UV-A treatment decreased UV absorbance more at longer wavelengths and over a broader wavelength band than did the UV-B treatment. Change in toxicity with UV irradiation was inconsistent among the metals tested in this study, indicating that some organic metal-binding ligands were more quickly removed or altered than others. The DOM remaining after irradiation appears to be qualitatively different from the unirradiated DOM. The much greater irradiance of UV-A makes its contribution to the removal and/or alteration of DOM at least as important as the influence of higher energy UV-B.  相似文献   

13.
The chlorophyte Prasiola stipitata produces a UV-absorbing substance with an absorption maximum at 324 nm. The wavelength-dependent induction of the synthesis of this substance was investigated using simulated solar radiation in combination with 15 cut-off and one broad-band filter. The algae were exposed from three different distances (89, 100 and 119 cm) to the solar simulator producing a maximum of 203.58, 1.24 and 46.86 W/m(2) and a minimum of 107.94, 0.64 and 24.44 W/m(2) irradiances for PAR, UV-B and UV-A, respectively. A polychromatic action spectrum was calculated from the pooled results showing a clear maximum at 300 nm in the long-wavelength UV-B range, but there is still some induction caused by UV-A and PAR. The ratio of the effectiveness from PAR to UV-A to UV-B amounts to 1:2:22.  相似文献   

14.
Sunlight is the most important environmental UV source, affecting not only human health but also the whole terrestrial ecosystem. The use of artificial sources is advantageous since it is independent of geographical location and seasonal variations, however, in some photobiological/photochemical studies the choice of a specific UV source in relation to the biological end-point studied is sometimes questionable. Furthermore, it is often difficult to compare the results obtained in different laboratories due to 'slight' differences in the physical characteristics of the UV sources used. In an attempt to address these issues we calculated and compared the physical characteristics and the biological efficiency in UV-B and UV-A regions for two biological end-points (CPD and Fpg-sensitive sites formation) for frequently used UV-B, UV-A sources and solar light simulators (SLS). Our calculation shows that FS20 lamp is appropriate for studying the biological effects of UV-B radiation although differences in spectral characteristics of the associated filters may lead to at least 2-fold yields in CPD production. Furthermore, the use of a SLS with a Kodacel filter alone is inadequate for studying environmental UV effects. A metal-halide source with a Schott WG345 filter is appropriate for studies on biological effects due to UV-A region. Relative exposure duration was calculated to achieve equal amount of CPD or Fpg-sensitive sites, provided equal, total UV-(A+B) irradiance for the different UV sources.  相似文献   

15.
Synthesis of extracellular matrix (ECM) proteins and their degradation by matrix metalloproteinases (MMP) are part of the dermal remodeling resulting from chronic exposure of skin to ultraviolet radiation (UVR). We have compared two alternative mechanisms for these responses, namely, a direct mechanism in which UV-B or UV-A is absorbed by fibroblasts and an indirect mechanism in which cytokines, produced in skin in response to UVR, stimulate production of the ECM proteins and MMP. These studies were carried out on human dermal fibroblasts grown in contracted, free-floating 9 day old collagen gels as a dermal equivalent. Synthesis of tropoelastin, collagen, fibrillin, MMP-1, -2, -3 and -9 and tissue inhibitors of metalloproteinases (TIMP)-1 and -2 were measured. Tropoelastin, collagen and fibrillin levels were stable between days 4 and 10, and MMP and TIMP decreased by day 10. Neither UV-B (2.5-50 mJ/cm2) nor UV-A (2-12 J/cm2) altered synthesis of ECM proteins, but UV-A increased MMP-1 and -3 production. Tropoelastin synthesis increased in response to transforming growth factor-beta1 (5 ng/mL) treatment. Both interleukin-1beta and tumor necrosis factor-alpha (10 ng/mL) decreased fibrillin messenger RNA levels but increased MMP-1, -3 and -9 synthesis markedly. Collagen synthesis was not modulated by UV-B, UV-A or cytokine treatment. These results indicate that certain cytokines may have greater effects on production of ECM proteins and MMP than absorption of UV-B and UV-A by fibroblasts grown in dermal equivalents and suggest that the former pathway may play a role in the dermal remodeling in photoaged skin.  相似文献   

16.
The photosynthetic performance of Enteromorpha linza (L.) J. Agardh-Chlorophyceae was determined with a portable PAM instrument in situ and under seminatural radiation conditions in Patagonia, Argentina. Solar radiation was measured in parallel with a three-channel radiometer, ELDONET (Real Time Computer, M?hrendorf, Germany), in three wavelength ranges, UV-B (280-315 nm), UV-A (315-400 nm), and PAR (400-700 nm). The effective photosynthetic quantum yield decreased after 15-min exposure to solar radiation when the thalli were kept in a fixed position but recovered in the subsequent shade conditions within several hours. A 30-min exposure of free floating thalli, however, caused less photoinhibition. The photosynthetic quantum yield of E. linza was also followed over whole days under clear sky, partly cloudy and rainy conditions in a large reservoir of water (free floating thalli) and in situ (thalli growing in rock pools). Most of the observed effect was due to visible radiation; however, the UV wavelength range, and especially UV-B, caused a significant reduction of the photosynthetic quantum yield. Fluence rate response curves indicated that the species is a typical shade plant which showed non-photochemical quenching at intermediate and higher irradiances. This is a surprising result since these algae are found in the upper eulittoral where they are exposed to high irradiances. Obviously they utilize light only during periods of low irradiances (morning, evening, high tide) while they shut down the electron transport chain during intensive exposure. Fast induction and relaxation kinetics have been measured in these algae for the first time and indicated a rapid adaptation of the photosynthetic capacity to the changing light conditions as well as a fast decrease of PS II fluorescence upon exposure to solar radiation. There was a strong bleaching of chlorophyll due to exposure to solar radiation but less drastic bleaching of carotenoids.  相似文献   

17.
Ultraviolet-B (UV-B; 280-320 nm)-emitting lamps unavoidably emit ultraviolet-A (UV-A; 320-400 nm) and ultraviolet-C (UV-C; <280 nm) radiation. Short-wavelength-blocking filters are generally used to limit the wave bands of UV under investigation. The widespread use of such filters means that all exposures to UV-B radiation will have a significant UV-A component. Therefore, the physiological effects unique to UV-B exposure are difficult to clearly isolate. This study presents a method to remove the UV-A and UV-C "contamination" using a liquid potassium chromate (K(2)CrO(4)) filter, thus allowing more direct assessment of the effects of UV-B exposure. Cultures of the green marine alga Dunaliella tertiolecta were grown in the absence of UV radiation. Sunlamps supplied the UV radiation for a 24 h exposure (solar radiation was not used in this study). The UV radiation was filtered either by the standard method (i.e. cellulose acetate (CA) with polyester = Mylar controls) or by a liquid filter of potassium chromate. Photosynthetic responses were compared. Major decreases in the ratio of variable to maximal fluorescence in dark-adapted cells and photosynthetic capacity were observed in CA-filtered cultures, whereas no change was observed in cells exposed to the same UV-B flux with the UV-A removed by K(2)CrO(4). The use of a CA filter with a Mylar control does not link results unequivocally to UV-B radiation. Such results should be interpreted with caution.  相似文献   

18.
From June to September 2005, we carried out experiments to determine the ultraviolet radiation (UVR) -induced photoinhibition of summer phytoplankton assemblages from a coastal site of the South China Sea. Variability in taxonomic composition was determined throughout the summer, with a peak chlorophyll a (chl a approximately 20 microg chl a L(-1)) dominated by the diatom Skeletonema costatum that was detected early in the study period; the rest of the time samples were characterized by monads and flagellates, with low chl a values (1-5 chl a microg L(-1)). Surface water samples were placed in quartz tubes, inoculated with radiocarbon and exposed to solar radiation for 2-3 h to determine photosynthetic rates under three quality radiation treatments (i.e. PAB, 280-700 nm; PA, 320-700 nm and P, 400-700 nm) using different filters and under seven levels of ambient irradiance using neutral density screens (P vs E curves). UVR inhibition of samples exposed to maximum irradiance (i.e. at the surface) varied from -12.2% to 50%, while the daytime-integrated UVR-related photoinhibition in surface seawater varied from -62% to 7%. The effects of UVR on the photosynthetic parameters P(B)(max) and E(k) were also variable, but UV-B accounted for most of the observed variability. During sunny days, photosynthesis of microplankton (>20 microm) and piconanoplankton (<20 microm) were significantly inhibited by UVR (mostly by UV-B). However, during cloudy days, while piconanoplankton cells were still inhibited by UVR, microplankton cells used UVR (mostly UV-A) as the source of energy for photosynthesis, resulting in higher carbon fixation in samples exposed to UVR than the ones exposed only to photosynthetically active radiation (PAR). Our results indicate that size structure and cloudiness clearly condition the overall impact of UVR on phytoplankton photosynthesis in this tropical site of South China. In addition, model predictions for this area considering only PAR for primary production might have underestimated carbon fixation due to UVR contribution.  相似文献   

19.
Coral bleaching is the manifestation of the dysfunction of the symbiosis between scleractinian corals and dinoflagellates of the diverse genus Symbiodinium and is induced by elevated temperatures and high irradiance. We investigated the photophysiological response of two genetically distinct Symbiodinium subtypes within clade A upon exposure to elevated temperatures at two light intensities for 3 weeks. While both subtypes displayed a characteristic photoacclimation to high light (HL) (decrease in light-harvesting pigments, lower photochemical efficiency of photosystem II, increased xanthophyll pool sizes), the tolerance toward thermal stress clearly differed between the two subtypes. Symbiodinium Ax was highly susceptible to chronic photoinhibition at temperatures ≥30°C, which was exacerbated under HL conditions. A1 showed a capacity for photoacclimation and high thermal tolerance, which might be related to higher cellular concentrations of photoprotective xanthophylls and the low-molecular antioxidant glutathione (GSx) along with the dynamic regulation of these photoprotective pathways. Whereas HL conditions induced both accumulation of diatoxanthin and GSx, thermal stress further stimulated xanthophyll cycling, which might compensate for diminished amounts of GSx at elevated temperatures. Our results show that the two clade A subtypes clearly differ in their strategies to cope with thermal stress in combination with high irradiance.  相似文献   

20.
Changes in mycosporine-like amino acids (MAAs) induced by the increase of photosynthetically active radiation (PAR) were studied in the toxic dinoflagellate Alexandrium tamarense. Cultures of A. tamarense were maintained at exponential growth under low (25 micromol quanta m(-2)s(-1)) PAR irradiance. The cultures were nutrient enriched and one day later exposed to higher irradiance (150 micromol quanta m(-2)s(-1)). The content of MAAs was determined by means of high performance liquid chromatography (HPLC). Eleven MAAs, including some partially characterized compounds, were identified. The MAAs synthesis induction can be described as a two-stage process. The first one involves the net synthesis of the MAAs bi-substituted by amino acids. In the second stage these compounds were transformed into other secondary MAAs. The two most prominent changes were observed in the concentration of porphyra-334 and palythene. The cellular concentration of porphyra-334 increased during the first 2h of exposure to higher irradiance and then decreased rapidly. In contrast, the cellular concentration of palythene showed a continuous accumulation since the beginning of the exposure. In A. tamarense the main route of MAAs transformation has porphyra-334 as a precursor of a sequential conversion resulting in the accumulation of palythene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号