首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Earlier results by the authors showed constructions of Lie algebraic, partial feedback linearizing control methods for pitch and plunge primary control utilizing a single trailing edge actuator. In addition, a globally stable nonlinear adaptive control method was derived for a structurally nonlinear wing section with both a leading and trailing edge actuator. However, the global stability result described in a previous paper by the authors, while highly desirable, relied on the fact that the leading and trailing edge actuators rendered the system exactly feedback linearizable via Lie algebraic methods. In this paper, the authors derive an adaptive, nonlinear feedback control methodology for a structurally nonlinear typical wing section. The technique is advantageous in that the adaptive control is derived utilizing an explicit parameterization of the structural nonlinearity and a partial feedback linearizing control that is parametrically dependent is defined via Lie algebraic methods. The closed loop stability of the system is guaranteed to be stable via application of La Salle's invariance principle.  相似文献   

2.
Aeroelastic analyses are performed for a 2-D typical section model with multiple nonlinearities. The differences between a system with multiple nonlinearities in its pitch and plunge spring and a system with a single nonlinearity in its pitch are thoroughly investigated. The unsteady supersonic aerodynamic forces are calculated by the doublet point method (DPM). The iterative V-g method is used for a multiple-nonlinear aeroelastic analysis in the frequency domain and the freeplay nonlinearity is linearized using a describing function method. In the time domain, the DPM unsteady aerodynamic forces, which are based on a function of the reduced frequency, are approximated by the minimum state approximation method. Consequently, multiple structural nonlinearities in the 2-D typical wing section model are influenced by the pitch to plunge frequency ratio. This result is important in that it demonstrates that the flutter speed is closely connected with the frequency ratio, considering that both pitch and plunge nonlinearities result in a higher flutter speed boundary than a conventional aeroelastic system with only one pitch nonlinearity. Furthermore, the gap size of the freeplay affects the amplitude of the limit cycle oscillation (LCO) to gap size ratio.  相似文献   

3.
This work investigates the influence of structural and aerodynamic nonlinearities on the dynamic behavior of a piezoaeroelastic system. The system is composed of a rigid airfoil supported by nonlinear torsional and flexural springs in the pitch and plunge motions, respectively, with a piezoelectric coupling attached to the plunge degree of freedom. The analysis shows that the effect of the electrical load resistance on the flutter speed is negligible in comparison to the effects of the linear spring coefficients. The effects of aerodynamic nonlinearities and nonlinear plunge and pitch spring coefficients on the system’s stability near the bifurcation are determined from the nonlinear normal form. This is useful to characterize the effects of different parameters on the system’s output and ensure that subcritical or “catastrophic” bifurcation does not take place. Numerical solutions of the coupled equations for two different configurations are then performed to determine the effects of varying the load resistance and the nonlinear spring coefficients on the limit-cycle oscillations (LCO) in the pitch and plunge motions, the voltage output and the harvested power.  相似文献   

4.
This paper presents a low-complexity design approach with predefined transient and steady-state tracking performance for global practical tracking of uncertain high-order nonlinear systems. It is assumed that all nonlinearities and their bounding functions are unknown and the reference signal is time varying. A simple output tracking scheme consisting of nonlinearly transformed errors and positive design parameters is presented in the presence of virtual and actual control variables with high powers where the error transformation technique using time-varying performance functions is employed. Contrary to the existing results using known nonlinear bounding functions of model nonlinearities, the proposed tracking scheme can be implemented without using nonlinear bounding functions (i.e., the feedback domination design), any adaptive and function approximation techniques for estimating unknown nonlinearities. It is shown that the tracking performance of the proposed control system is ensured within preassigned bounds, regardless of high-power virtual and actual control variables. The motion tracking problem of an underactuated unstable mechanical system with unknown model parameters and nonlinearities is considered as a practical application, and simulation results are provided to show the effectiveness of the proposed theoretical result.  相似文献   

5.
The paper treats the question of the existence of limit cycleoscillations of prototypical aeroelastic wing sections with structuralnonlinearity using the describing function method. The chosen dynamicmodel describes the nonlinear plunge and pitch motion of a wing. Themodel includes an asymmetric structural nonlinearity in the pitchdegree-of-freedom. The dual-input describing functions of thenonlinearity are derived for the limit cycle analysis. Analyticalexpressions for the average value, and the amplitude and frequency ofoscillation of pitch and plunge responses are obtained. Based on ananalytical approach as well as the Nyquist criterion, stability of thelimit cycles is examined. Numerical results are presented for a set ofvalues of the flow velocities and the locations of the elastic axiswhich show that the predicted limit cycle oscillation amplitude andfrequency as well as the mean value are quite close to the actualvalues. Furthermore, for the chosen model with linear aerodynamics, itis seen that the amplitude of the pitch limit cycle oscillation does notalways increase with the flow velocity for certain elastic axislocations.  相似文献   

6.
In this paper, an airfoil-based piezoaeroelastic energy harvesting system is proposed with an additional supporting device to harvest the mechanical energy from the leadlag motion. A dimensionless dynamic model is built considering the large-effective-angle-of-attack vibrations causing (1) the nonlinear coupling between the pitch–plunge–leadlag motions, (2) the inertia nonlinearity, and (3) the aerodynamic nonlinearity modeled by the ONERA dynamic stall model. Cubic hardening stiffness is introduced in the pitch degree of freedom for persistent vibrations with acceptable amplitude beyond the flutter boundary. The nonlinear aeroelastic response and the average power output are numerically studied. Limit cycle oscillations are observed and, as the flow velocity exceeds a secondary critical speed, the system experiences complex vibrations. The power output from the leadlag motion is smaller than that from the plunge motion, whereas the gap is narrowed with increasing flow velocity. Case studies are performed toward the effects of several dimensionless system parameters, including the nonlinear torsional stiffness, airfoil mass eccentricity, airfoil radius of gyration, mass of the supporting devices, and load resistances in the external circuits. The optimal parameter values for the power outputs from the plunge and leadlag motions are, respectively, obtained. Beyond the secondary critical speed, it is shown that the variations of the power outputs with those parameters become irregular with fluctuations and multiple local maximums. The bifurcation analysis shows the mutual transitions between the limit cycle oscillations, multi-periodic vibrations, and possible chaos. The influences of these complex vibrations on the power outputs are discussed.  相似文献   

7.
针对结构试验系统的非线性和不确定性特性,研究了一种基于神经网络的非线性内模自适应加载控制方法。引入的神经网络内模可跟踪学习对象的时变动力学,控制器的设计较少依赖于对象的先验知识,控制参数的调整是基于被控过程的测量信息,利用导出的神经网络算法来实现的。实验结果证明该系统具有良好的控制效果。  相似文献   

8.
The characterization of the behaviour of nonlinear aeroelastic systems has become a very important research topic in the Aerospace Industry. However, most work carried to-date has concentrated upon systems containing structural or aerodynamic nonlinearities. The purpose of this paper is to study the stability of a simple aeroservoelastic system with nonlinearities in the control system and power control unit. The work considers both structural and control law nonlinearities and assesses the stability of the system response using bifurcation diagrams. It is shown that simple feedback systems designed to increase the stability of the linearized system also stabilize the nonlinear system, although their effects can be less pronounced. Additionally, a nonlinear control law designed to limit the control surface pitch response was found to increase the flutter speed considerably by forcing the system to undergo limit cycle oscillations instead of fluttering. Finally, friction was found to affect the damping of the system but not its stability, as long as the amplitude of the frictional force is low enough not to cause stoppages in the motion.  相似文献   

9.
机翼/外挂颤振主动抑制的控制律研究   总被引:5,自引:0,他引:5  
邹丛青  陈桂彬 《力学学报》1991,23(3):274-282
本文介绍了对机翼/外挂系统的颤振抑制控制律的研究。并用三种控制律的结果进行了风洞实验验证。结果表明:控制律的设计是成功的,理论计算与实验结果吻合良好。 文中重点介绍了两种控制律,它们都是以现代控制理论为基础。首先,把最优控制理论与颤振分析的状态空间法相结合,得到状态反馈。然后导出不同的输出反馈。文中,还讨论了该系统的阵风减缓和稳定裕度。 为对比起见,还给出了在同一模型上,用气动能量概念方法导出的控制律。由此,可看出它们在颤振抑制效益上的差异。  相似文献   

10.
An aeroelastic system is a nonlinear system with two freedoms, i.e., the plunge displacement and the pitch angle, in a dynamic system model. A chaos effect or a limit cycle oscillation is presumably attributed to the nonlinear effect of the pitch angle mentioned above or the interaction between the aerodynamic behaviors. It is that a single trailing edge input in an aeroelastic system is employed as a way to suppress the limit cycle oscillation with an exclusive choice between the plunge displacement and the pitch angle for a control law design. Consequently, the remaining inevitably turns into an internal dynamics, whose stability is adversely affected by the flight speed and structure parameters, a problem improved by no means using a singe control input design. Toward this end, this work presents a controller design criterion with multiple input channels for both the leading and training edges to remove the uncertainty effect of internal dynamics, and render more room for the response design of the plunge displacement as well as the pitch angle. Mostly due to external disturbance and unknown uncertainty, there is a deviation between the intended and implemented system performances for a robust control design, a mainstream research issue in the modern control. As a consequence of a sliding mode control utilized here, the limit cycle oscillation suffered in an aeroelastic system is removed effectively by the use of a terminal sliding mode control, and the chattering phenomenon seen in the control signal is hence eliminated by his method. It is seen from simulations that the control system is stably assured to reach the target within a limited time frame with an addition of a saturation function to the control law.  相似文献   

11.
引导混沌运动到周期运动的自适应控制策略   总被引:4,自引:0,他引:4  
胡海岩 《力学学报》1997,29(5):631-635
提出一种自适应控制策略,对控制参数作线性反馈将非线性动力系统由混沌运动引导到指定的周期运动.所解决的关键问题是将反馈控制强度的确定转化为扩维相空间中的极点配置问题.给出了将该策略用于控制Logistic映射和受迫Dufing振子的仿真.  相似文献   

12.
Wagg  David J. 《Meccanica》2003,38(2):227-238
In this paper we consider using a model reference adaptive control approach to control nonlinear systems. We consider the controller design and stability analysis associated with these type of adaptive systems. Then we discuss the use of model reference adaptive control algorithms to control systems which exhibit nonlinear dynamical behaviour using the example of a Duffing oscillator being controlled to follow a linear reference model. For this system we show that if the nonlinearity is small then standard linear model reference control can be applied. A second example, which is often found in synchronization applications, is when the nonlinearities in the plant and reference model are identical. Again we show that linear model reference adaptive control is sufficient to control the system. Finally we consider controlling more general nonlinear systems using adaptive feedback linearization to control scalar nonlinear systems. As an example we use the Lorenz and Chua systems with parameter values such that they both have chaotic dynamics. The Lorenz system is used as a reference model and a single coordinate from the Chua system is controlled to follow one of the Lorenz system coordinates.  相似文献   

13.
阵风响应分析是大型民用飞机设计必不可少的工作. 利用操纵面的主动偏转实现机翼阵风减缓是未来民用飞行器的一个关键技术. 基于CFD/CSD耦合的气动弹性仿真方法,将阵风视为输入,翼根弯矩作为输出,通过系统辨识方法建立跨音速阵风响应的状态空间分析模型. 而后将副翼作动位移视为系统输入,建立副翼作动对应的机翼响应分析模型. 耦合上述2个模型,通过最优控制方法设计副翼偏转的控制律,实现跨音速机翼的阵风响应减缓. 通过设计状态观测器得到最优控制反馈所需的状态量. 通过数值算例验证了所设计的阵风减缓控制律的有效性,能将翼根弯矩减少60%~80%.   相似文献   

14.
In this paper, an output feedback tracking control scheme is put forwarded for a class of stochastic nonlinear systems, whose dynamics involve not only unknown parameters but also unmeasured states multiplied by output nonlinearities. A type of reduced-order observer is first developed. By adding some output related items in the observer, the estimation error realize global asymptotic convergence under disturbance free condition, and global bounded convergence when considering disturbance. Besides, the dimension of the closed-loop system is reduced, and the update law of this observer gain is beneficial for steady tracking. After the observer was established, the controller is constructed by employing the adaptive backstepping approach, and a smooth nonsingular robust item is proposed to handle the influence of stochastic disturbance. All the signals in the closed system is proved to be globally bounded in probability. Moreover the output tracking error converges to an arbitrary small neighborhood of the origin by proper choosing of the design parameters. The simulation results based on current control scheme and the comparison with the previous method illustrate that the proposed output feedback scheme realizes good tracking performance and strong ability on stochastic disturbance attenuation.  相似文献   

15.
This paper proposes an active disturbance rejection adaptive controller for tracking control of a class of uncertain nonlinear systems with consideration of both parametric uncertainties and uncertain nonlinearities by effectively integrating adaptive control with extended state observer via backstepping method. Parametric uncertainties are handled by the synthesized adaptive law and the remaining uncertainties are estimated by extended state observer and then compensated in a feedforward way. Moreover, both matched uncertainties and unmatched uncertainties can be estimated by constructing an extended state observer for each channel of the considered nonlinear plant. Since parametric uncertainties can be reduced by parameter adaptation, the learning burden of extended state observer is much reduced. Consequently, high-gain feedback is avoided and improved tracking performance can be expected. The proposed controller theoretically guarantees a prescribed transient tracking performance and final tracking accuracy in general while achieving asymptotic tracking when the uncertain nonlinearities are not time-variant. The motion control of a motor-driven robot manipulator is investigated as an application example with some suitable modifications and improvements, and comparative simulation results are obtained to verify the high tracking performance nature of the proposed control strategy.  相似文献   

16.
Analytical and numerical analyses of the nonlinear response of a three-degree-of-freedom nonlinear aeroelastic system are performed. Particularly, the effects of concentrated structural nonlinearities on the different motions are determined. The concentrated nonlinearities are introduced in the pitch, plunge, and flap springs by adding cubic stiffness in each of them. Quasi-steady approximation and the Duhamel formulation are used to model the aerodynamic loads. Using the quasi-steady approach, we derive the normal form of the Hopf bifurcation associated with the system??s instability. Using the nonlinear form, three configurations including supercritical and subcritical aeroelastic systems are defined and analyzed numerically. The characteristics of these different configurations in terms of stability and motions are evaluated. The usefulness of the two aerodynamic formulations in the prediction of the different motions beyond the bifurcation is discussed.  相似文献   

17.
This paper studies the issue of adaptive trajectory tracking control for an underactuated vibro-driven capsule system and presents a novel motion generation framework. In this framework, feasible motion trajectory is derived through investigating dynamic constraints and kernel control indexes that underlie the underactuated dynamics. Due to the underactuated nature of the capsule system, the global motion dynamics cannot be directly controlled. The main objective of optimization is to indirectly control the friction-induced stick–slip motions to reshape the passive dynamics and, by doing so, to obtain optimal system performance in terms of average speed and energy efficacy. Two tracking control schemes are designed using a closed-loop feedback linearization approach and an adaptive variable structure control method with an auxiliary control variable, respectively. The reference model is accurately matched in a finite-time horizon. The key point is to define an exogenous state variable whose dynamics is employed as a control input. The tracking performance and system stability are investigated through rigorous theoretic analysis. Extensive simulation studies are conducted to demonstrate the effectiveness and feasibility of the developed trajectory model and optimized adaptive control system.  相似文献   

18.
This paper develops two novel decentralized adaptive fuzzy control methods of large-scale nonaffine uncertain nonlinear systems. By using a fuzzy inference system and implicit function theorem, a decentralized direct adaptive state feedback fuzzy control algorithm is firstly presented for a class of large-scale nonaffine continuous-time systems. By using a high-gain observer to reconstruct the system states, an extension is made to a decentralized output feedback control of unmeasurable interactive nonaffine systems. The decentralized adaptive fuzzy control schemes via state and output feedback guarantee the stability of the closed-loop large-scale systems. The effectiveness of the developed approaches is demonstrated through simulation results of a platoon of vehicles within an automated highway system.  相似文献   

19.
The fluid–structure interactions of a finite aspect ratio, cantilevered, flexible wing were investigated using a cyber-physical system to virtually augment the torsional dynamics of the wing. Cyber-physical systems (CPS), which have recently been pursued by a small number of research groups, have proven to be a very useful mechanism to interrogate the fluid–structure interaction parameter space. The premise of a CPS is to use dynamic feedback control to make a system behave according to desired equations of motion. Systems are composed of embedded hardware and software coupled with real-time computing to give the user the flexibility to quickly explore a range of structural parameters. With the advancement of modern control theory, robotics and embedded systems, CPSs integrate both simulation and physical properties into a smart structure which can be used to push the boundaries of research investigations.The CPS in this work allows for the investigation of dynamic aeroelastic instabilities of a three-dimensional, flexible, rectangular planform wing. Two dynamic instability regimes are observed: first, stall flutter, in which the torsional or pitch mode is excited through the dynamic stall process, and second, coupled (or classical) flutter, in which the pitch mode couples with the bending mode. By varying the torsional stiffness and therefore the frequency of torsional versus bending oscillations of the wing, both of these regimes can be attained at the same aerodynamic conditions using the CPS.  相似文献   

20.
Marine mammals travel long distances by utilizing and transforming wave energy to thrust through proper control of their caudal fin. On the other hand, manmade ships traveling in a wavy sea store large amounts of wave energy in the form of kinetic energy for heaving, pitching, rolling and other ship motions. A natural way to extract this energy and transform it to useful propulsive thrust is by using a biomimetic wing. The aim of this paper is to show how an actively pitched biomimetic wing could achieve this goal when it performs a random heaving motion. More specifically, we consider a biomimetic wing traveling with a given translational velocity in an infinitely extended fluid and performing a random heaving motion with a given energy spectrum which corresponds to a given sea state. A formula is invented by which the instantaneous pitch angle of the wing is determined using the heaving data of the current and past time steps. Simulations are then performed for a biomimetic wing at different heave energy spectra, using an indirect Source-Doublet 3-D–BEM, together with a time stepping algorithm capable to track the random motion of the wing. A nonlinear pressure type Kutta condition is applied at the trailing edge of the wing. With a mollifier-based filtering technique, the 3-D unsteady rollup pattern created by the random motion of the wing is calculated without any simplifying assumptions regarding its geometry. Calculated unsteady forces, moments and useful power, show that the proposed active pitch control always results in thrust producing motions, with significant propulsive power production and considerable beneficial stabilizing action to ship motions. Calculation of the power required to set the pitch angle prove it to be a very small percentage of the useful power and thus making the practical application of the device very tractable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号