首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The liquid-solid phase diagram of the binary systems AlPO4?M3PO4(M=Li, Na, K) have been established. The additional compounds Na3Al(PO4)2, Na3Al2(PO4)3 and K3Al2(PO4)3 have been found again. A new compound K3Al(PO4)2 is observed. The melting point of Na3PO4 is 1545°C and K3PO4 does not melt up to 1700°C.  相似文献   

2.
Phase formation in the Re-Se-Br-MBr systems (M = K, Rb, Cs) was studied by NMR spectroscopy and powder X-ray diffraction. The reactions taking place in alkali metal halide melts were found to give, among the series of cluster anions [{Re6Se8 − n Br n }Br6](4 − n)− (0 ≤ n≤ 4), polymeric complexes Re6Se8Br 2 and M2Re6Se8Br4 (M = Cs, Rb) and salts containing cluster anions [Re6Se6Br8]2− and [Re6Se7Br7]3− as the major products. The effect of the alkali metal cation on the product composition and ratio was established. Original Russian Text ? S.S. Yarovoi, Yu.V. Mironov, S.V. Tkachev, V.E. Fyodorov, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 2, pp. 344–349.  相似文献   

3.
陶占良  陈军 《化学进展》2009,21(9):1945-1953
氢能是一种新型的清洁能源,有望替代碳经济,而氢的储存是氢能应用的关键。近年来,研究集中在具有储氢容量高和可逆性好等优点的固态储氢材料上。许多新型储氢材料不断出现,其中以MAlH4(M=Li, Na)为代表的金属复合氢化物体系被认为是最有前景的储氢材料之一。本文综述了MAlH4(M=Li, Na)作为可逆储氢材料的研究现状,主要从吸放氢反应、储氢性能、反应机理、理论计算和存在的问题等方面进行了讨论,并指出其相关发展趋势。  相似文献   

4.
Phase equilibria in the systems M2MoO4-Cr2(MoO4)3-Zr(MoO4)2 (M = Li, Na, or Rb) were investigated by X-ray powder diffraction analysis, DTA, and IR spectroscopy. The subsolidus structure of the phase diagrams of the systems under study was established. Two phases are formed in the Rb2MoO4-Cr2(MoO4)3-Zr(MoO4)2 system with the molar ratios of the starting components equal to 5: 1: 1 (S 2) and 1: 1: 1 (S 1). Proceeding from that the isostructurality of Rb5FeHf(MoO4)6 and S 2 the unit cell, parameters are determined for S 2.  相似文献   

5.
The hydrogen storage system LiH + NH(3) ? LiNH(2) + H(2) is one of the most promising hydrogen storage systems, where the reaction yield can be increased by replacing Li in LiH with other alkali metals (Na or K) in order of Li < Na < K. In this paper, we have studied the alkali metal M (M = Li, Na, K) dependence of the reactivity of MH with NH(3) by calculating the potential barrier of the H(2) desorption process from the reaction of an M(2)H(2) cluster with an NH(3) molecule based on the ab initio structure optimization method. We have shown that the height of the potential barrier becomes lower in order of Li, Na, and K, where the difference of the potential barrier in Li and Na is relatively smaller than that in Na and K, and this tendency is consistent with the recent experimental results. We have also shown that the H-H distance of the H(2) dimer at the transition state takes larger distance and the change of the potential energy around the transition state becomes softer in order of Li, Na, and K. There are almost no M dependence in the charge of the H atom in NH(3) before the reaction, while that of the H atom in M(2)H(2) takes larger negative value in order of Li, Na, and K. We have also performed molecular dynamics simulations on the M(2)H(2)-NH(3) system and succeeded to reproduce the H(2) desorption from the reaction of Na(2)H(2) with NH(3).  相似文献   

6.
7.
High-energy milling of Y(BH(4))(3) (containing LiCl as a by-product, which has not been removed) with MBH(4) (M = Li, Na, K, (CH(3))(4)N) leads to the first two examples of quasi-ternary yttrium borohydrides: KY(BH(4))(4) and (CH(3))(4)NY(BH(4))(4), while no chemical reaction is observed for LiBH(4) and NaBH(4). KY(BH(4))(4) is isostructural to NaSc(BH(4))(4) (Cmcm, a = 8.5157(4) ?, b = 12.4979(6) ?, c = 9.6368(5) ?, V = 1025.62(9) ?(3), Z = 4), while (CH(3))(4)NY(BH(4))(4) crystallises in primitive orthorhombic cell, similarly to KSc(BH(4))(4) (Pnma, a = 15.0290(10) ?, b = 8.5164(6) ?, c = 12.0811(7) ?, V = 1546.29(17) ?(3), Z = 4). The thermal decomposition of hydrogen-rich KY(BH(4))(4) (8.6 wt.% H) involves the formation of an unidentified intermediate at 200 °C and recovery of KBH(4) at higher temperatures; at 410 °C, KCl and YH(2) are observed. The thermal decomposition of (CH(3))(4)NY(BH(4))(4) occurs via two partly overlapping endothermic steps with concomitant emission of H(2) and organic compounds. Heating of a NaBH(4)/Y(BH(4))(3) mixture above 165 °C results in a mixed-cation mixed-anion borohydride, NaY(BH(4))(2)Cl(2), but not NaY(BH(4))(4). The reduced reactivity of Y(BH(4))(3) towards borohydride Lewis bases when compared to hypothetical scandium borohydride can be explained by the lower Lewis acidity of Y(BH(4))(3) than Sc(BH(4))(3).  相似文献   

8.
Thermodynamic calculations predict the formation of hydrochloric acid gas and alkali tungstates during hydrogen reduction of WO3 doped with alkali chlorides MCl (M=Li, Na, K). The formation of HCl was proved experimentally by simultaneously coupled TG-MS measurements from RT to 1200°C. The formation of HCl is the result of the reaction between MCl, WO3 and water. Ubiquitous traces of moisture in the gas are sufficient for reaction according to WO3+(2+2n)MCl +(1+n)H2O→M2+2nWO4+n+(2+2n)HCl (n=0, 1, 2). Laboratory reduction tests showed that the formed tungstates differ. NaCl and KCl form monotungstates (n=0), while LiCl produces more lithium-rich compounds (n=1, 2). Temperature and humidity, among other process factors, control subsequent reduction of the tungstates to metals. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Present work is a part of thermodynamic research program on the MX?LnX3 system (M=alkali metal,X=Cl, Br andLn=lanthanide). Molar enthalpies of mixing in the LiBr?NdBr3, NaBr?NdBr3 and KBr?NdBr3 liquid binary systems have been determined at temperature 1063 K by direct calorimetry in the whole range of composition. Investigated systems are generally characterized by negative enthalpies of mixing with minimum atX NdBr3≈0.3–0.4. These enthalpies decrease with decrease of ionic radii of alkali metals. Molar enthalpies of solid-solid and solid-liquid phase transitions of K3NdBr6 and Cs3NdBr6 have been also determined by differential scanning calorimetry (DSC). K3NdBr6 is formed at 689 K from KBr and K2NdBr5 with enthalpy of 44.0 kJ·mol?1 whereas Cs3NdBr6 is stable at ambient temperature and undergoes phase transition in the solid state at 731 K with enthalpy of 8.8 kJ·mol?1. Enthalpies of melting have been also determined.  相似文献   

10.
Recently characterized K3ZnCl4NO3 and (NH4)3ZnCl4NO3, and newly prepared Rb3ZnCl4NO3 constitute a limited series of isomorphous double-anion salts (space group Pnma, Z = 4). Room-temperature (295 K) Raman spectra from polycrystalline samples of the compounds are reported and interpreted on the basis of the Cs site symmetry of the ZnCl4(2-) and NO3- ions with reference to the D2h factor group of the unit cell. The spectra are compared with Raman spectra of the corresponding M2ZnCl4 and MNO3 single-anion salts. Relative positions and frequencies of the ZnCl4(2-) modes vary considerably among the M3ZnCl4NO3 compounds, despite the isomorphism. The NO3- modes are more similar in all three compounds. The NO3- doubly degenerate v3 and V4 modes are split into two distinct bands as a result of the decent in symmetry from D3h for the free ion to Cs at the crystallographic site. The unequal intensities of the v3 bands observed for K3ZnCl4NO3 and Rb3ZnCl4NO3 and the equal intensities of the v4 bands observed for all three compounds suggest the same factor-group assignments as the high-temperature phase NH4NO3(III). The free-ion Raman-inactive planar deformation mode, v2, is evident in all three compounds, but with lesser intensity than its overtone 2v2. In K3ZnCl4NO3 and Rb3ZnCl4NO3, the symmetric stretching band, in addition to the very strong component for v1, shows a weak, low-frequency band found in many ionic nitrates, which has been attributed to thermally disordered nitrate ions or hot bands. This feature is not found in the spectrum of (NH4)3ZnCl4NO3. The 12 NH4+ ions in the unit cell of (NH4)3ZnCl4NO3, which occupy C1 and Cs sites in a 2:1 ratio, give rise to extremely broad bands that show no evidence of the individual symmetry distinctions of the cations. The broad band from NH4+ v4 obscures the region in which NO3- v3 bands are expected, but the NO3- overtone 2v2 is evident as a sharp peak above a similarly broad band from NH4+ v2.  相似文献   

11.
The MCl/AlCl3/SO2 Systems (M = Li, Na, K, NH4) Phase diagrams of the ternary systems of the type MCl/AlCl3/SO2 were determined by measurement of SO2 pressure, solubilities, and by thermal analysis. The complete phase diagram in the range from ?30 to +50°C is given for the case M = Na, partial diagrams for M = Li, K, NH4. There exist solid compounds of the type MAlCl4 · nSO2 (M = Li, Na; n = 1.5 and 3) (M = K; n = 1.5 and 5) (M = NH4; n = 5). Liquid phases can be obtained at room temperature and atmospheric pressure in the NaCl or LiCl containing systems.  相似文献   

12.
MGaSiO4, MAlGeO4, and MGaGeO4 phases (M = Na, K) have been synthesized using flux, hydrothermal, and melt growth techniques and characterized by TEM and single crystal and powder X-ray diffraction. The K compounds crystallize with a (2√3A, C) hexagonal unit cell which is a superstructure of the (A, C) hexagonal kalsilite (KAlSiO4) cell. The room-temperature polymorphs of the Na compounds crystallize with a (√3A, 3A, C, γ ⋍ 90°) monoclinic cell and are isostructural with beryllonite (NaBePO4). TEM data suggest that they transform to a kalsilite-like (√3A, C) hexagonal cell at high temperature.  相似文献   

13.
The ion mobility in new fluoride glasses (mol %) 45ZrF4 · 25BiF3 · 30MF (I) (M = Li, Na, K), (70 - x)ZrF4 · xBiF3 · 30LiF (II) (15 ≤ x ≤ 35), and 45ZrF4 · (55-x)BiF3 · xMF (III) (M = Li, Na; 10 ≤ x ≤ 30) has been studied by 7Li, 19F, and 23Na NMR in the temperature range 250–500 K. The character of ion motion in bismuth fluorozirconate glasses I and III is determined by temperature and the nature and concentration of an alkali-metal cation. Major type of ion mobility in glasses I–III at temperature 400–440 K are local motions of fluorine-containing moieties and diffusion of lithium ions (except for the glass with x = 10). The factors responsible for diffusion in the fluoride sublattice of glasses I have been determined. Sodium ions in glasses I and III are not involved in ion transport.  相似文献   

14.
15.
H+/M+ (M=Na, K) ion exchange on -titanium phosphate (-TiP) at 25°C and under static conditions has been studied. Titration and hydrolysis curves and the exchange isotherms were determined. The substitution was followed by X-ray diffraction. Direct calorimetric measurements were carried out at different degrees of conversion and the variation of the exchange enthalpy and the hydrolysis enthalpy of -TiP were obtained. The results are compared to the values of H° obtained in previous works from titration data.  相似文献   

16.
The unimolecular reactions of protonated and metalated polyglycols with kiloelectronvolt translational energies have been studied by collisionally activated dissociation and neutralization-reionization mass spectrometry. The former method provides information on the ionic dissociation products, whereas the latter allows for the identification of the complementary neutral losses. Protonated linear polyglycols mainly undergo charge-initiated decompositions that lead to eliminations of smaller oligomers. On the other hand, protonated crown ethers (“cyclic” polyglycols) favor charge-induced reactions that proceed by cleavages of two ethylene oxide units in the form of 1,4-dioxane. Replacement of one O by NH in the crown ether dramatically changes its unimolecular chemistry; now, charge-remote 1,4-eliminations from ring-opened isomers are preferred. Charge-remote reactions are also the major decomposition channels of all metalated precursors studied. The linear polyglycols decompose primarily by 1,4-H2 eliminations and to a lesser extent by homolytic cleavages near chain ends. The reverse is true for metalated crown ethers, which preferentially produce distonic radical cations by the loss of saturated radicals; these reactions are proposed to involve prior rearrangement to open-chain isomers. The nature of the metal ion (Li+, Na+, or K+) does not greatly affect the unimolecular chemistry of the cationized polyglycol. In general, metalated precursors form many abundant fragment ions over the entire mass range; hence, collisional activation of such ions at high kinetic energy should be particularly useful for structure elucidations.  相似文献   

17.
Ab initio calculations reveal that all-metal antiaromatic molecules like Al4M4 (M = Li, Na and K) can be stabilized in half sandwich (Al4M4)Fe(CO)3 and full sandwich (Al4M4)2Ni complexes. The formation of the full sandwich complex [(Al4M4)2Ni] from its organometallic precursor depends on the stability of the organic-inorganic hybrid (C4H4)Ni(Al4Li4).  相似文献   

18.
19.
The equilibrium geometries, isomerization energies, force fields, vibration frequencies, and band intensities in the IR spectra of M2XO4 molecules (M = Li, Na, K; X = S, Se, Te, Cr, Mo, W) were calculated ab initio by the Hartree-Fock method in extended basis sets using relativistic effective core potentials. The relative energies of alternative structures were refined by the configuration interaction method taking into account single- and double-excited configurations, with the Davidson correction for quartic excitations. The results show that the chemical bonds between the metal atom and the acid residue XO4 are highly polar. The majority of M2XO4 molecules have two isomers. In both isomers the XO4 2 - anion coordinates the metal cations M+ in the bisbidentate (bb) fashion. The equilibrium configurations ofthe nuclei in the ground (bb) and excited (bb') isomers have the D 2 d and C s symmetry, respectively. In the bb isomer, the cations coordinate at the opposite, and in the bb' isomer, at the adjacent edges of the XO4 2 - anion, having the shape of a distorted tetrahedron. The relative energy of the bb' isomer is 9-28 kJ mol- 1. The energy barriers to intramolecular rearrangements bb'(C 4s) bb(D 2 d) are also low: 15-35 kJ mol- 1. These results show that the M2XO4 molecules are structurally nonrigid, with a polytopic character of the M-XO4 chemical bonds. The calculation results were compared to the published experimental data on the structure and vibration spectra of the M2XO4 molecules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号