首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This research aims to develop a time‐dependent pseudospectral‐finite difference scheme for solving a 3D dual‐phase‐lagging heat transport equation in a submicroscale thin film. The scheme uses periodic pseudospectral discretization in space and a fully second‐order finite difference discretization in time. The three consecutive time steps model is then solved explicitly, by using a preconditioned conjugate gradient method. The scheme is illustrated by an example which is used to investigate the heat transfer in a gold submicroscale thin film. Comparisons are made with available literature. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

2.
Heat transport at the microscale is of vital importance in microtechnology applications. In this study, we develop a finite difference scheme of the Crank‐Nicholson type by introducing an intermediate function for the heat transport equation at the microscale. It is shown by the discrete energy method that the scheme is unconditionally stable. Numerical results show that the solution is accurate. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 697–708, 1999  相似文献   

3.
In this article a sixth‐order approximation method (in both temporal and spatial variables) for solving nonhomogeneous heat equations is proposed. We first develop a sixth‐order finite difference approximation scheme for a two‐point boundary value problem, and then heat equation is approximated by a system of ODEs defined on spatial grid points. The ODE system is discretized to a Sylvester matrix equation via boundary value method. The obtained algebraic system is solved by a modified Bartels‐Stewart method. The proposed approach is unconditionally stable. Numerical results are provided to illustrate the accuracy and efficiency of our approximation method along with comparisons with those generated by the standard second‐order Crank‐Nicolson scheme as well as Sun‐Zhang's recent fourth‐order method. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

4.
In this paper, we extend the Sun and Zhang’s [24] work on high order finite difference method, which is based on the Richardson extrapolation technique and an operator interpolation scheme for the one and two dimensional steady convection diffusion equations to the three dimensional case. Firstly, we employ a fourth order compact difference scheme to get the fourth order accurate solution on the fine and the coarse grids. Then, we use the Richardson extrapolation technique by combining the two approximate solutions to get a sixth order accurate solution on coarse grid. Finally, we apply an operator interpolation scheme to achieve the sixth order accurate solution on the fine grid. During this process, we use alternating direction implicit (ADI) method to solve the resulting linear systems. Numerical experiments are conducted to verify the accuracy and effectiveness of the present method.  相似文献   

5.
Heat transport at the microscale is of vital importance in microtechnology applications. The heat transport equation is different from the traditional heat diffusion equation since a second‐order derivative of temperature with respect to time and a third‐order mixed derivative of temperature with respect to space and time are introduced. In this study, we consider the heat transport equation in spherical coordinates and develop a three‐level finite difference scheme for solving the heat transport equation in a microsphere. It is shown that the scheme is convergent, which implies that the scheme is unconditionally stable. Results show that the numerical solution converges to the exact solution. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 60–71, 2004.  相似文献   

6.
In this paper, we present fourth-order finite difference method for solving nonlinear one-dimensional Burgers’ equation. This method is unconditionally stable. The convergence analysis of the present method is studied and an upper bound for the error is derived. Numerical comparisons are made with most of the existing numerical methods for solving this equation.  相似文献   

7.
A compact finite difference scheme is developed to the three-dimensional microscale heat transport equation. This new scheme is fourth order in space and second order in time. It is proved to be unconditionally stable with respect to initial values. Numerical results are provided for comparison testing purpose.  相似文献   

8.
Heat transport at the microscale is of vital importance in microtechnology applications. The heat transport equation differs from the traditional heat diffusion equation in having a second‐order derivative of temperature with respect to time and a third‐order mixed derivative of temperature with respect to space and time. In this study, we develop a high‐order compact finite difference scheme for the heat transport equation at the microscale. It is shown by the discrete Fourier analysis method that the scheme is unconditionally stable. Numerical results show that the solution is accurate. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 441–458, 2000  相似文献   

9.
In this paper, the differential transform is employed to discuss the behaviors of nonlinear heat conduction problem. A hybrid method of differential transform and finite difference approach is proposed to solve the transient responses of a nonlinear heat conduction problem. Different parameters of the equation and boundary conditions are considered to verify the feasibility of the proposed method to such problems. Simulation results are illustrated and discussed in comparison with the linear case. The results show that the hybrid method can achieve good results for such problems.  相似文献   

10.
In this paper, we consider the characteristic finite difference streamline diffusion method for two-dimensional convection-dominated diffusion problems. The scheme is combined the method of characteristics with the finite difference streamline diffusion (FDSD) method to create the characteristic FDSD (C-FDSD) procedures. Stability analysis and error estimate of the C-FDSD method are deduced. The scheme not only realizes the purpose of lowering the time-truncation error, using larger time step for solving the convection-dominated diffusion problems, but also keeps the favorable stability and high precision of the FDSD method. Finally, numerical experiments are presented to illustrate the availability of the scheme.  相似文献   

11.
Computation of eigenvalues of regular Sturm–Liouville problems with periodic boundary conditions is considered. We show that a proof similar to that given by Andrew (1989) can be used to prove that a correction technique applied to a finite difference scheme given by Vanden Berghe et al. (1995) reduces the error in the kth eigenvalue estimate from O(k4h2) to O(kh2), where h is the uniform mesh length. We also provide a significantly shorter proof of a slightly weaker result.  相似文献   

12.
An Erratum has been published for this article in Numerical Linear Algebra with Applications 8 (4) 2001, iii–iv. We are concerned with numerical solutions of convection–diffusion equations. The convergence behaviour of numerical solutions is considered by using the finite difference approximation with respect to spatial variables and implicit method with respect to time variable. It is shown that superconvergence occurs near a part of the boundary which has Dirichlet's data. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Heat transport at the microscale is of vital importance in microtechnology applications. In this article, we proposed a new ADI difference scheme of the Crank‐Nicholson type for heat transport equation at the microscale. It is shown that the scheme is second order accurate in time and in space in the H1 norm. Numerical result implies that the theoretical analysis is correct and the scheme is effective. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

14.
In this article, we study a system of nonlinear parabolic partial differential equations arising from the heat and moisture transport through textile materials with phase change. A splitting finite difference method with semi‐implicit Euler scheme in time direction is proposed for solving the system of equations. We prove the existence and uniqueness of a classical positive solution to the parabolic system as well as the existence and uniqueness of a positive solution to the splitting finite difference system. We provide optimal error estimates for the splitting finite difference system under the condition that the mesh size and time step size are smaller than a positive constant which solely depends upon the physical parameters involved. Numerical results are presented to confirm our theoretical analysis. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

15.
We study a finite difference scheme for a combustion model problem. A projection scheme near the combustion wave, and the standard upwind finite difference scheme away from the combustion wave are applied. Convergence to weak solutions with a combustion wave is proved under the normal Courant-Friedrichs-Lewy condition. Some con-  相似文献   

16.
In this article, numerical solutions of the generalized Burgers–Fisher equation are obtained using a compact finite difference method with minimal computational effort. To verify this, a combination of a sixth‐order compact finite difference scheme in space and a low‐storage third‐order total variation diminishing Runge–Kutta scheme in time have been used. The computed results with the use of this technique have been compared with the exact solution to show the accuracy of it. The approximate solutions to the equation have been computed without transforming the equation and without using linearization. Comparisons indicate that there is a very good agreement between the numerical solutions and the exact solutions in terms of accuracy. The present method is seen to be a very good alternative to some existing techniques for realistic problems. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

17.
In this article, we apply the method of lines (MOL) for solving the heat equation. The use of MOL yields a system of first–order differential equations with initial value. The solution of this system could be obtained in the form of exponential matrix function. Two approaches could be applied on this problem. The first approach is approximation of the exponential matrix by Taylor expansion, Padé and limit approximations. Using this approach leads to create various explicit and implicit finite difference methods with different stability region and order of accuracy up to six for space and superlinear convergence for time variables. Also, the second approach is a direct method which computes the exponential matrix by applying its eigenvalues and eigenvectors analytically. The direct approach has been applied on one, two and three‐dimensional heat equations with Dirichlet, Neumann, Robin and periodic boundary conditions.  相似文献   

18.
A finite difference method for fractional partial differential equation   总被引:1,自引:0,他引:1  
An implicit unconditional stable difference scheme is presented for a kind of linear space–time fractional convection–diffusion equation. The equation is obtained from the classical integer order convection–diffusion equations with fractional order derivatives for both space and time. First-order consistency, unconditional stability, and first-order convergence of the method are proven using a novel shifted version of the classical Grünwald finite difference approximation for the fractional derivatives. A numerical example with known exact solution is also presented, and the behavior of the error is examined to verify the order of convergence.  相似文献   

19.
It has been shown in [Nuclear Science and Engineering 93 (1986) 6799] that the finite difference discretization of Navier–Stoke's equation leads to the solution of N×N system written in the matrix form as My=B, where M is a quasi-tridiagonal having non-zero elements at the top right and bottom left corners. We present an efficient parallel algorithm on a p-processor hypercube implemented in two phases. In phase I a generalization of an algorithm due to Kowalik [High Speed Computation, Springer, New York] is developed which decomposes the above matrix system into smaller quasi-tridiagonal (p+1)×(p+1) subsystem, which is then solved in Phase II using an odd–even reduction method.  相似文献   

20.
In this paper, we present a finite difference method for singularly perturbed linear second order differential-difference equations of convection–diffusion type with a small shift, i.e., where the second order derivative is multiplied by a small parameter and the shift depends on the small parameter. Similar boundary value problems are associated with expected first-exit times of the membrane potential in models of neurons. Here, the study focuses on the effect of shift on the boundary layer behavior or oscillatory behavior of the solution via finite difference approach. An extensive amount of computational work has been carried out to demonstrate the proposed method and to show the effect of shift parameter on the boundary layer behavior and oscillatory behavior of the solution of the problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号