首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We calculate the equal-time commutator of two fermionic currents within the framework of the 1+1 dimensional fully quantized theory, describing the interaction of fermions with a vector boson. It is shown that the interaction does not change the result obtained within the theory of free fermions. Received: 10 November 1999 / Revised version: 20 January 2000 / Published online: 8 May 2000  相似文献   

2.
Four lectures about chiral symmetry and dynamical fermions in QCD. 1) Chiral symmetry in continuum QCD with an eye toward lattice simulations. 2) Lattice fermions with exact chiral symmetry: staggered fermions, fermions in five dimensions, chiral fermions in four dimensions. 3) A typical lattice simulation from beginning to end: the simulation algorithm, designing observables to measure some desired quantity, analyzing the data. 4) Recent lattice results relevant to chiral symmetry: a mini-review.  相似文献   

3.
Disordered systems exhibiting exponential localization are mapped to anisotropic spin chains with localization length being related to the anisotropy of the spin model. This relates localization phenomenon in fermions to the rotational symmetry breaking in the critical spin chains. One of the intriguing consequence is that the statement of Onsager universality in spin chains implies universality of the localized fermions where the fluctuations in localized wave functions are universal. We further show that the fluctuations about localized nonrelativistic fermions describe relativistic fermions. This provides a new approach to understand the absence of localization in disordered Dirac fermions. We investigate how disorder affects well known universality of the spin chains by examining the multifractal exponents. Finally, we examine the effects of correlations on the localization characteristics of relativistic fermions. Received 28 September 2001 / Received in final form 30 November 2001 Published online 2 October 2002 RID="a" ID="a"e-mail: isatija@nickel.nist.gov  相似文献   

4.
Most states of the fractional quantum Hall effect may be interpreted in terms of an integral quantum Hall effect of weakly-interacting quasiparticles (composite fermions). The recently discovered state does not belong to these states because its formation is due to the residual interactions between composite fermions, which become relevant when the composite-fermion levels are only partially filled. We have derived a model of interacting composite fermions, which reveals the self-similarity of the fractional quantum Hall effect and which allows for a systematic study of higher generations of composite fermions. Here, we derive the form of the interaction potential between these hierarchical composite fermions and provide some stability criteria for such states.  相似文献   

5.
The consequences of CP and CPT invariance for production and subsequent decay of Dirac and Majorana fermions in polarized fermion-antifermion annihilation are analytically studied. We derive general symmetry relations for the production spin density matrix and for the three-particle decay matrices and obtain constraints for the polarization and the spin-spin correlations of Dirac and Majorana fermions. We prove that only for Majorana fermions the energy and opening angle distribution factorizes exactly into contributions from production and decay if CP is conserved. Received: 6 November 2001 / Revised version: 23 April 2002 / Published online: 12 July 2002  相似文献   

6.
We calculate the phase diagrams at high temperature of SU(N) gauge theories with massive fermions by minimizing the one-loop effective potential. Considering fermions in the adjoint (Adj) representation at various N we observe a variety of phases when Nf2 Majorana flavours and periodic boundary conditions are applied to fermions. Also the confined phase is perturbatively accessible. For N=3, we add Fundamental (F) representation fermions with antiperiodic boundary conditions to adjoint QCD to show how the Z(3)-symmetry breaks in the confined phase.  相似文献   

7.
C. Wetterich 《Annals of Physics》2010,325(12):2750-2786
We describe fermions in terms of a classical statistical ensemble. The states τ of this ensemble are characterized by a sequence of values one or zero or a corresponding set of two-level observables. Every classical probability distribution can be associated to a quantum state for fermions. If the time evolution of the classical probabilities pτ amounts to a rotation of the wave function , we infer the unitary time evolution of a quantum system of fermions according to a Schrödinger equation. We establish how such classical statistical ensembles can be mapped to Grassmann functional integrals. Quantum field theories for fermions arise for a suitable time evolution of classical probabilities for generalized Ising models.  相似文献   

8.
The Thomas–Fermi model at finite temperature is extended to describe a system of self-gravitating weakly interacting massive fermions in a general-relativistic framework. The existence and properties of the gravitational phase transition in this model are investigated numerically. It is shown that when a nondegenerate gas of weakly interacting massive fermions is cooled below some critical temperature, a condensed phase emerges, consisting of quasidegenerate fermion stars. For fermion masses of 10 to 25 keV, these fermion stars may very well provide an alternative explanation for the supermassive compact dark objects that are observed at galactic centers. Received: 23 April 1999 / Revised version: 24 June 1999 / Published online: 28 September 1999  相似文献   

9.
We consider inhomogeneous quantum groups that transform various types of fermions: standard fermions, commuting fermions and orthofermions. These quantum groups are notq-deformations.  相似文献   

10.
We study a many-body mixture of an equal number of bosons and two-component fermions with a strong contact attraction. In this system bosons and fermions can be paired into composite fermions. We construct a large N extension where both bosons and fermions have the extra large N degrees of freedom and the boson–fermion interaction is extended to a four-point contact interaction which is invariant under the O(N) group transformation, so that the composite fermions become singlet in terms of the O(N) group. It is shown that such O(N) singlet fields have controllable quantum fluctuations suppressed by 1/N factors and yield a systematic 1/N-expansion in terms of composite fermions. We derive an effective action described by composite fermions up to the next-to-leading-order terms in the large N expansion, and show that there can be the BCS superfluidity of composite fermions at sufficiently low temperatures.  相似文献   

11.
马永利 《中国物理快报》2004,21(12):2355-2358
In six different regimes for a spatial phase diagram of a trapped interacting Bose-Fermi gas mixture at low temperatures, we present the conditions for the spatial demixing and separation of bosons and fermions. Starting from a semiclassically thermodynamic model for the local density functional of thermal bosons and fermions,the explicit analytical expressions for the fugacities of bosons and fermions are derived in different regimes by means of a first-order perturbation method in a local-density approximation. The critical values of the fermionboson interaction strength as a function of the fractional composition of fermions have a general feature: increase,extreme and decrease with increasing the fermionic composition slightly above Bose-Einstein critical temperature.  相似文献   

12.
In this paper we discuss a left–right symmetric model for elementary particles and their connection with the mass spectrum of elementary fermions. The model is based on the group . New mirror fermions and a minimal set of Higgs particles that break this symmetry down to are proposed. The model can accommodate a consistent pattern for charged and neutral fermion masses as well as neutrino oscillations. An important consequence of the model is that the connection between the left and right sectors can be implemented by the neutral vector gauge boson Z and a new heavy Z'. Received: 15 June 2000 / Revised version: 14 September 2000 / Published online: 5 February 2001  相似文献   

13.
The path integral for ghost fermions, which is heuristically made use of in the Batalin-Fradkin-Vilkovisky approach to quantization of constrained systems, is derived from first principles. The derivation turns out to be rather different from that of physical fermions since the definition of Dirac states for ghost fermions is subtle. With these results at hand, it is then shown that the nonminimal extension of the Becchi-Rouet-Stora-Tyutin operator must be chosen differently from the notorious choice made in the literature in order to avoid the boundary terms that have always plagued earlier treatments. Furthermore it is pointed out that the elimination of states with nonzero ghost number requires the introduction of a thermodynamic potential for ghosts; the reason is that Schwarz's Lefschetz formula for the partition function of the time-evolution operator is not capable, despite claims to the contrary, to get rid of nonzero ghost number states on its own. Finally, we comment on the problems of global topological nature that one faces in the attempt to obtain the solutions of the Dirac condition for physical states in a configuration space of nontrivial geometry; such complications give rise to anomalies that do not obey the Wess-Zumino consistency conditions. Received: 4 May 2001 / Revised version: 10 October 2001 / Published online: 8 February 2002  相似文献   

14.
By considering the local vector current between nucleon states and imposing charge conservation, we determine its renormalisation constant and quark mass improvement coefficient for Symanzik O(a) improved Wilson fermions. The computation is first performed for quenched fermions (and for completeness also with unimproved fermions) and compared against known results. The two-flavour unquenched case is then considered.  相似文献   

15.
The observed small, positive cosmological constant may originate from a four-fermion interaction generated by the spin-torsion coupling in the Einstein–Cartan–Sciama–Kibble gravity if the fermions are condensing. In particular, such a condensation occurs for quark fields during the quark-gluon/hadron phase transition in the early Universe. We study how the torsion-induced four-fermion interaction is affected by adding two terms to the Dirac Lagrangian density: the parity-violating pseudoscalar density dual to the curvature tensor and a spinor-bilinear scalar density which measures the nonminimal coupling of fermions to torsion.  相似文献   

16.
In the Einstein–Cartan theory of torsion-free gravity coupling to massless fermions, the four-fermion interaction is induced and its strength is a function of the gravitational and gauge couplings, as well as the Immirzi parameter. We study the dynamics of the four-fermion interaction to determine whether effective bilinear terms of massive fermion fields are generated. Calculating one-particle-irreducible two-point functions of fermion fields, we identify three different phases and two critical points for phase transitions characterized by the strength of four-fermion interaction: (1) chiral symmetric phase for massive fermions in strong coupling regime; (2) chiral symmetric broken phase for massive fermions in intermediate coupling regime; (3) chiral symmetric phase for massless fermions in weak coupling regime. We discuss the scaling-invariant region for an effective theory of massive fermions coupled to torsion-free gravity in the low-energy limit.  相似文献   

17.
姚顺宇  邓可  周树云 《物理》2016,45(10):635-639
近日,清华大学物理系研究人员及合作者在Weyl半金属研究中取得新进展:首次在实验上观测到第二类Weyl半金属(MoTe2)上的拓扑费米弧,在真实材料中证实了破坏洛伦兹不变性的第二类Weyl 费米子的存在。相关文章于2016 年9 月6 日在NaturePhysics 上发表。这是继去年第一类Weyl费米子得到证实之后凝聚态物理研究上的又一重大突破。什么是第二类Weyl费米子?它与第一类Weyl费米子有何区别?作者通过本文来做一个简单的介绍。  相似文献   

18.
Dual amplitudes of the five-point function for two fermions and three scalar bosons are constructed, and are used to obtain a consistent procedure for inclusing two fermions in the general N-point function.  相似文献   

19.
We construct a map between the quantum field theory of free Weyl or Majorana fermions and the probability distribution of a classical statistical ensemble for Ising spins or discrete bits. More precisely, a Grassmann functional integral based on a real Grassmann algebra specifies the time evolution of the real wave function qτ(t) for the Ising states τ. The time dependent probability distribution of a generalized Ising model obtains as . The functional integral employs a lattice regularization for single Weyl or Majorana spinors. We further introduce the complex structure characteristic for quantum mechanics. Probability distributions of the Ising model which correspond to one or many propagating fermions are discussed explicitly. Expectation values of observables can be computed equivalently in the classical statistical Ising model or in the quantum field theory for fermions.  相似文献   

20.
At one-loop level the decay , where f1 and f2 are two spin-1/2 particles with the same electric charge, is mediated by a boson B and a spin-1/2 fermion F. The boson B may have either spin - interacting with the fermions through the Dirac matrices 1 and - or spin 1 - with V+A and V-A couplings to the fermions. I give general formulae for the one-loop electroweak amplitude of in all these cases. Received: 24 February 2003 / Revised version: 26 March 2003 / Published online: 2 June 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号