首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nanofluidic-microfluidic interface is reported that rectifies ionic current using uncoated symmetric nanocapillaries. Previously, ionic current rectification has been achieved by other groups with nanochannels with differential coatings and in nanopores that are conical in shape. This simple device uses nanocapillary membranes (NCMs) with uncoated symmetric channels to connect a microfluidic channel and a larger solution reservoir. The conductivity of the solution in the microchannel appears to be critical in the formation of the low "off" state current and the high "on" state current. It is hypothesized that the "off" state current is low due to the formation of an ion depletion zone in the microchannel while the higher "on" state currents are produced by a zone of enhanced ionic concentration in the microchannel.  相似文献   

2.
Hu YL  Wang C  Wu ZQ  Xu JJ  Chen HY  Xia XH 《Electrophoresis》2011,32(23):3424-3430
We report a controllable method to fabricate silica colloidal crystals at defined position in microchannel of microuidic devices using simple surface modification. The formed PCs (photonic crystals) in microfluidic channels were stabilized by chemical cross-linking of Si-O-Si bond between neighboring silica beads. The voids among colloids in PCs integrated on microfluidic devices form interconnected nanoporous networks, which show special electroosmotic properties. Due to the "surface-charge induced ion depletion effect" mechanism, FITC-labeled proteins can be efficiently and selectively concentrated in the anodic boundary of the ion depletion zone. Using this device, about 10(3) - to 10(5)-fold protein concentration was achieved within 10 min. The present simple on chip protein concentration device could be a potential sample preparation component in microfluidic systems for practical biochemical assays.  相似文献   

3.
Hybrid microfluidic/nanofluidic devices offer unique capabilities for manipulating and analyzing minute volumes of expensive or hard-to-obtain samples. Here, multilayer poly-(methyl methacrylate) microchips, with multiple spatially isolated microfluidic channels interconnected by nanocapillary array membranes (NCAMs), are fabricated using an adhesive contact printing process. The NCAMs, positioned between the microfluidic channel layers, add functionality to the inter-microchannel fluid transfer unit operation. They do so because the transport of specific analytes through the NCAM can be controlled by adjusting the ionic strength, the polarity of the applied bias, the surface charge density, and the pore size. A simplified, floating injection technique for NCAM-coupled nanofluidic devices is described and compared with conventional biased injection. In the floating injection approach, a voltage is applied across the injection channel and the slight electric field extension at the cross-section is used to transfer analytes through the nanopores to the separation channel. Floating injection excels in plug reproducibility, separation resolution, and operation simplicity, although it decreases assay throughput relative to biased injection. Floating injection can avoid the uneven distribution of analytes in the microfluidic channel that sometimes results from biased injection because of the volume mismatch between NCAM nanopore transport capacity and the supply of fluid. Moreover, the pressure-driven flow caused by the mismatch of the EOFs in the microfluidic channels connected by an NCAM must be considered when using NCAMs with pore diameters below 50 nm.  相似文献   

4.
Droplet emulsification in microfluidic devices involves the constant formation of fresh interfaces between two immiscible fluids. When the multiphase system contains surfactant, dynamic mass transfer of the surfactant onto the interface results in a dynamic interfacial tension different from the static interfacial tension measured in an equilibrium state. In this work, we have systematically investigated the effects of surfactant concentration and type on the dynamic interfacial tension of two different liquid-liquid two phase systems [N-hexane/water-sodium dodecyl sulfate (SDS) and N-hexane/water-cetyltrimethylammonium bromide (CTAB)] rapidly producing relatively small droplets in coaxial microfluidic devices. Dynamic interfacial tension experiments using the pendent drop method and a tensiometer were conducted, and a semiempirical equation was developed to put into context the effects of surfactants and the experimental conditions on droplet formation and dynamic interfacial tension in dynamic microchannel flows. The results presented in this work provide a more in-depth understanding of the dynamic effects of surfactants on droplet formation and the precise controllable preparation of monodispersed droplets in microfluidic devices.  相似文献   

5.
Herein we demonstrate a fully abiotic smart single‐nanopore device that rectifies ionic current in response to the temperature. The temperature‐responsive nanopore ionic rectifier can be switched between a rectifying state below 34 °C and a non‐rectifying state above 38 °C actuated by the phase transition of the poly(N‐isopropylacrylamide) [PNIPAM] brushes. On the rectifying state, the rectifying efficiency can be enhanced by the dehydration of the attached PNIPAM brushes below the LCST. When the PNIPAM brushes have sufficiently collapsed, the nanopore switches to the non‐rectifying state. The concept of the temperature‐responsive current rectification in chemically‐modified nanopores paves a new way for controlling the preferential direction of the ion transport in nanofluidics by modulating the temperature, which has the potential to build novel nanomachines with smart fluidic communication functions for future lab‐on‐chip devices.  相似文献   

6.
郭志军  王家海  胡耀辉  汪尔康 《化学进展》2011,23(10):2103-2112
灵感来源于蛋白质离子通道的仿生功能化单纳米通道,已逐渐成为一种成熟的单分子检测技术和离子整流器。功能化纳米通道包括两种:基因改造的蛋白质纳米通道和固体加工的纳米通道。常用的固体纳米通道有三种:在纳米氮化硅或石墨烯上用聚焦离子束(FIB)或电子束(FEB)轰击得到的纳米通道,化学腐蚀聚合物薄膜中的重金属离子轨迹得到的锥形纳米通道和拉制毛细管或激光刻蚀得到的玻璃纳米孔。相对于蛋白质纳米通道,固态的人工纳米通道具有更优越的机械稳定性,并可用于各种功能基团的修饰。经过近十年的发展,包括蛋白质纳米通道在内的各种仿生的纳米通道已广泛用于对小分子、蛋白质和聚合物等其他一些对象的定性和定量检测。本综述详细介绍了近年来国内外该领域的发展,并对未来的发展方向作了简要的展望。  相似文献   

7.
Surface modification of polymer materials for preparing microfluidic devices including poly(dimethyl siloxane) (PDMS) was investigated with phospholipids polymers such as poly(2-methacryloyloxylethyl phosphorylcholine(MPC)-co-n-butyl methacrylate) (PMB) and poly(MPC-co-2-ethylhexyl methacrylate-co-2-(N,N-dimethylamino)ethyl methacrylate) (PMED). The hydrophilicity of every surface on the polymer materials modified with these MPC polymers increased and the value of zeta-potential became close to zero. The protein adsorption on the polymer materials with and without the surface modification was evaluated using a protein mixture of human plasma fibrinogen and serum albumin. Amount of proteins adsorbed on these polymeric materials showed significant reduction by the surface modification with the MPC polymers compared to the uncoated surfaces ranging from 56 to 90%. Furthermore, we successfully prepared PDMS-based microchannel which was modified by simple coating with the PMB and PMED. The modified microchannel also revealed a significant reduction of adsorption of serum albumin. We conclude that the MPC polymers are useful for reducing unfavorable protein adsorption on microfluidic devices.  相似文献   

8.
We study the effect of nonsolvent on the formation of polymer nanomaterials in the nanopores of porous templates. Water (nonsolvent) is added into a poly (methyl methacrylate) (PMMA) solution in dimethylformamide (DMF) confined in the nanopores of an anodic aluminum oxide (AAO) template. Water forms a wetting layer on the pore wall and causes the PMMA solution to be isolated in the center of the nanopore, resulting in the formation of PMMA nanospheres or nanorods after the solvent is evaporated. The formation of the polymer nanomaterials induced by nonsolvent is found to be driven by the Rayleigh‐instability‐type transformation. Without adding the nonsolvent, PMMA chains precipitate on the walls of the nanopores after the solvent is evaporated, and PMMA nanotubes are obtained.  相似文献   

9.
Current rectification is well known in ion transport through nanoscale pores and channel devices. The measured current is affected by both the geometry and fixed interfacial charges of the nanodevices. In this article, an interesting trend is observed in steady-state current-potential measurements using single conical nanopores. A threshold low-conductivity state is observed upon the dilution of electrolyte concentration. Correspondingly, the normalized current at positive bias potentials drastically increases and contributes to different degrees of rectification. This novel trend at opposite bias polarities is employed to differentiate the ion flux affected by the fixed charges at the substrate-solution interface (surface effect), with respect to the constant asymmetric geometry (volume effect). The surface charge density (SCD) of individual nanopores, an important physical parameter that is challenging to measure experimentally and is known to vary from one nanopore to another, is directly quantified by solving Poisson and Nernst-Planck equations in the simulation of the experimental results. The flux distribution inside the nanopore and the SCD of individual nanopores are reported. The respective diffusion and migration translocations are found to vary at different positions inside the nanopore. This knowledge is believed to be important for resistive pulse sensing applications because the detection signal is determined by the perturbation of the ion current by the analytes.  相似文献   

10.
《中国化学快报》2019,30(9):1607-1617
Solid-state nanopore in analytical chemistry has developed rapidly in the 1990s and it is proved to be a versatile new tool for bioanalytical chemistry. The research field of solid-state nanopore starts from mimicking the biological nanopore in living cells. Understanding the transport mechanism of biological nanopore in vivo is a big challenge because of the experimental difficulty, so it is essential to establish the basic research of artificial nanopores in vitro especially for the analysis of ions and small molecules. The performance of solid-state nanopores could be evaluated by monitoring currents when ions and molecules passed through. The comparison of the two types of nanopores based on current-derived information can reveal the principle of biological nanopores, while the solid-state nanopores are applied into practical bioanalysis. In this review, we focus on the researches of the solid-state nanopores in the fabrication process and in the analysis of ions and small molecules. Fabrication methods of nanopores, ion transport mechanism, small molecule analysis and theoretical studies are discussed in detail.  相似文献   

11.
Solid-state nanopore in analytical chemistry has developed rapidly in the 1990s and it is proved to be a versatile new tool for bioanalytical chemistry. This review focuses on the analysis of ions and small molecules with nanopores including nanopipettes, polymer film nanopores, Si3N4 nanopores, graphene nanopores, MoS2 nanopores and MOFs.  相似文献   

12.
《Electrophoresis》2018,39(4):626-634
Solid‐state nanopores are nanoscale channels through otherwise impermeable membranes. Single molecules or particles can be passed through electrolyte‐filled nanopores by, e.g. electrophoresis, and then detected through the resulting physical displacement of ions within the nanopore. Nanopore size, shape, and surface chemistry must be carefully controlled, and on extremely challenging <10 nm‐length scales. We previously developed a framework to characterize nanopores from the time‐dependent changes in their conductance as they are being formed through solution‐phase nanofabrication processes with the appeal of ease and accessibility. We revisited this simulation work, confirmed the suitability of the basic conductance equation using the results of time‐dependent experimental conductance measurements during nanopore fabrication by Yanagi et al., and then deliberately relaxed the model constraints to allow for (i) the presence of defects; and (ii) the formation of two small pores instead of one larger one. Our simulations demonstrated that the time‐dependent conductance formalism supports the detection and characterization of defects, as well as the determination of pore number, but with implementation performance depending on the measurement context and results. In some cases, the ability to discriminate numerically between the correct and incorrect nanopore profiles was slight, but with accompanying differences in candidate nanopore dimensions that could yield to post‐fabrication conductance profiling, or be used as convenient uncertainty bounds. Time‐dependent nanopore conductance thus offers insight into nanopore structure and function, even in the presence of fabrication defects.  相似文献   

13.
Memristive and memcapacitive behaviors are observed from ion transport through single conical nanopores in SiO(2) substrate. In i-V measurements, current is found to depend on not just the applied bias potential but also previous conditions in the transport-limiting region inside the nanopore (history-dependent, or memory effect). At different scan rates, a constant cross-point potential separates normal and negative hysteresis loops at low and high conductivity states, respectively. Memory effects are attributed to the finite mobility of ions as they redistribute within the negatively charged nanopore under applied potentials. A quantative correlation between the cross-point potential and electrolyte concentration is established.  相似文献   

14.
Inspired by biological systems that have the inherent skill to generate considerable bioelectricity from the salt content in fluids with highly selective ion channels and pumps on cell membranes,herein,a fully abiotic,single glass conical nanopores energy-harvesting is demonstrated.Ion current rectification(ICR)in negatively charged glass conical nanopores is shown to be controlled by the electrolyte concentration gradient depending on the direction of ion diffusion.The degree of ICR is enhanced with the increasing forward concentration difference.An unusual rectification inversion is observed when the concentration gradient is reversely applied.The maximum power output with the individual nanopore approaches10~4pW.This facile and cost-efficient energy-harvesting system has the potential to power tiny biomedical devices or construct future clean-energy recovery plants.  相似文献   

15.
In this review we consider recent results from our group that are directed towards developing "smart" synthetic nanopores that can mimic the functions of biological nanopores (transmembrane proteins). We first discuss the preparation and characterization of conical nanopores synthesized using the track-etch process. We then consider the design and function of conical nanopores that can rectify the ionic current that flows through these pores under an applied transmembrane potential. Finally, two types of sensors that we have developed with these conical nanopores are described. The first sensor makes use of molecular recognition elements that are bound to the nanopore mouth to selectively block the nanopore tip, thus detecting the presence of the analyte. The second sensor makes use of conical nanopores in a resistive-pulse type experiment, detecting the analyte via transient blockages in ionic current.  相似文献   

16.
Electrokinetically driven fluid transport was evaluated within three-dimensional hybrid nanofluidic-microfluidic devices incorporating Au-coated nanocapillary array membranes (NCAMs). Gold NCAMs, prepared by electroless gold deposition on polymeric track-etched membranes, were susceptible to gas bubble formation if the interfacial potential difference exceeded approximately 2 V along the length of the gold region. Gold membranes were etched to yield 250 mum wide coated regions that overlap the intersection of two orthogonal microfluidic channels in order to minimize gas evolution. The kinetics of electrolysis of water at the opposing ends of the gold region was modeled and found to be in satisfactory agreement with experimental measurements of the onset of gas bubble formation. Conditions to achieve electrokinetic injection across Au-coated NCAMs were identified, with significant reproducible injections being possible for NCAMs modified with this relatively thin gold stripe. Continuous gold films led to suppressed injections and to a variety of ion enrichment/depletion effects in the microfluidic source channel. The suppression of injections was understood through finite element modeling which revealed the presence of a significant electrophoretic velocity component in opposition to electroosmotic flow at the edge of the Au-dielectric regions.  相似文献   

17.
Nanopore pH sensing is based on the interaction between the surface charge of the nanopore and ions passing through the nanopore. The nanopore surface charge can be derived from the acid-base dissociation equilibrium of the modified polyelectrolyte. Various polyelectrolytes have been selected based on the acid dissociation constant of the monomer units, and various techniques have been applied to modify nanopores. However, they have been developed without clear guidelines for characterizing the surface modification status or surface charge. One reason has been the difficulty in accurately estimating the surface charge of nanopores in solution. Thus, in this study, the dissociation constant (pKaapp) of the surface charge of a modified polyelectrolyte nanopore was quantitatively estimated via electrochemical measurements. Previously, the modification status of nanopores has been evaluated using the ion current response. In addition, we monitored in real-time the polyelectrolyte modification status using a quartz crystal microbalance (QCM). Some polyelectrolytes were difficult to immobilize directly on the nanopore surface, and those polymers could be effectively modified by the layer-by-layer (LbL) technique. Therefore, we produced a guideline for the fabrication of a nanopore sensor for pH measurements under physiological conditions by quantitative evaluation of the pKaapp via electrochemical methods, the monitoring of the modification status by QCM, and the development of an effective modification method via the LbL technique.  相似文献   

18.
Self-assembly of nanopore-spanning lipid bilayers (npsLBs) paves the way toward chip-based integrated membrane protein biosensing. We present a novel approach to analyze the formation of npsLB at individual nanopores using quantitative analysis of high-resolution microscopy images. From this analysis we derive necessary conditions for the formation of npsLBs on nanopore arrays by liposome fusion and discuss the limitations of the process as a function of nanopore geometry, lipid membrane properties, and surface interaction. Most importantly, applying liposomes with diameters larger than the nanopore is demonstrated to be a necessary but not sufficient condition for npsLB formation. A theoretical model is used to discuss and explain this experimental finding.  相似文献   

19.
Chen Z  Gao Y  Su R  Li C  Lin J 《Electrophoresis》2003,24(18):3246-3252
A stainless steel template for the fabrication of plastic microfluidic devices has been developed by photolithography and chemical etching technique. The preparation process of the template is simple, rapid, and low-cost. The cross sectional profiles of raised microchannels on the template are trapezoidal. The surface roughness of the templates was controlled down to 190 nm. The template can be used repeatedly to generate devices reproducibly. The microfluidic devices of poly(methyl methacrylate) (PMMA) were fabricated by in situ polymerization using the templates. The reproducibility of the fabricated microchannel is high and the relative standard deviation is 0.7% by the in situ polymerization approach. Some physical properties of the polymerized microchannels were characterized including the transparency, the thermal deformation temperature, and the dimensional information. Current monitoring was used to evaluate the electroosmotic flow within the microchannels under the electric field strength of 300 V/cm.  相似文献   

20.
Ion-current measurements were made on synthetic polymer membranes that contained a single conically shaped nanopore. This entailed placing an electrolyte solution on either side of the membrane, using an electrode placed in each solution to control the transmembrane potential, and measuring the resulting transmembrane ion current. The effect of the crown ether commonly called 18-crown-6 (18C6) on the measured ion current was investigated. Adding 18C6 to the electrolyte solution on one side of a conical nanopore membrane provides a way to rectify the ion current flowing through the nanopore. This chemical rectification is observed only when the cation of the electrolyte is complexed by 18C6 (e.g., K+), and when the mouth diameter of the conical nanopore is of molecular dimensions, in this case approximately 1.5 nm. This chemical rectification can either augment or diminish the inherent electrostatic rectification observed with these small mouth-diameter nanopores. We have interpreted these results using a model based on the formation of a junction potential at the membrane-solution interface. This junction potential arises because the transference number for the K+-18C6 complex in bulk solution is larger than its transference number in the mouth of the conical nanopore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号