首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Solid State Sciences》2007,9(3-4):287-294
A composite of dodecylsulfate intercalated Mg–Al and Co–Al LDHs in which the layers of the two LDHs are randomly costacked was prepared starting from the monolayer colloidal dispersions of the individual surfactant intercalated LDHs obtained through delamination in 1-butanol. The surfactant ion of the composite could be exchanged for acetate ions. The thermal decomposition and reconstruction behavior of the acetate-intercalated composite was found to be different from those of an LDH in which each layer contains Mg, Co and Al and a physical mixture of Mg–Al and Co–Al LDHs. While the composite shows partial reconstruction to LDH phase even after heating up to 1000 °C the other samples do not show reconstruction beyond 800 °C.  相似文献   

2.
采用离子交换法合成了不同Mg/Al物质的量比的12-磷钨酸(H_3PW_(12)O_(40),HPW)插层水滑石(LDHs),采用XRD、FT-IR、Raman、ICP-AES、TG-DSC等分析手段表征其物化性质,Hammett指示剂-正丁胺滴定法测定其酸强度和酸量分布。进一步将其用于原油催化酯化脱酸反应,并与NO_3型LDHs对比,探讨酯化活性与催化剂性质之间的关系。结果表明,催化剂的活性主要受酸性和比表面积的影响。HPW插层LDHs的酯化活性明显优于NO3型LDHs,归因于增强的酸性和增大的比表面积。对于弱酸性的NO_3型LDHs,酯化活性与比表面积呈正向关系,Mg/Al物质的量比为4时,具有最大的比表面积和脱酸活性。而对于较强酸性的HPW插层LDHs,酯化活性主要受到酸量的影响,Mg/Al物质的量比为2的催化剂具有最高的酸量和脱酸活性。  相似文献   

3.
By using acetate-buffer (sodium acetate and acetic acid)/NaCl mixed solutions, the deintercalation of carbonate ions (CO(2-)3) was conducted on MgAl--LDHs at different Mg/Al ratios-LDH2 (LDH with Mg/Al approximately 2) and LDH3 (LDH with Mg/Al approximately 3). When only an acetate-buffer solution was used, decarbonation did not take place even if the buffer solution was made acidic enough to dissolve LDH itself; however, the addition of NaCl to the buffer solution caused deintercalation of the carbonate ions from the MgAl-LDHs and the reaction was conducted without any morphological and weight change at 25 degrees C. Under the optimum conditions, full decarbonation was attained for the two MgAl-LDHs in minutes, and the obtained LDHs contained Cl(-) in the interlayer space without incorporation of any acetate anions due to their extremely low anion selectivity of acetate ion. The allowable range for the concentration of the decarbonation solution is wide, and the change in pH due to the decarbonation reaction is slight because of the buffering effect. The decarbonation was affected by the Mg/Al ratio of the LDH; i.e., the present LDH2 was slightly more difficult to decarbonate than LDH3, probably due to the higher layer-charge density of LDH2.  相似文献   

4.
This study examined the effect of the interlayer spacing of a Mg–Al layered double hydroxide (Mg–Al LDH) on the ability of the Mg–Al LDH to take up a nonionic organic material. Mg–Al LDHs, intercalated with 1-propanesulfonate (PS?), 1-hexanesulfonate (HS?), and 1-dodecanesulfonate (DS?), were prepared by coprecipitation, yielding PS·Mg–Al LDH, HS·Mg–Al LDH, and DS·Mg–Al LDH, respectively. The increase in the alkyl chain lengths of the Mg–Al LDHs (PS? < HS? < DS?) resulted in the perpendicular orientation of the organic acid anions in the interlayer of Mg–Al LDH, which in turn resulted in more organic acid anions being accommodated in the interlayer space. An organic acid anion with a large molecular length was more easily intercalated in the interlayer of Mg–Al LDH than one with a small molecular length. This was attributed to the hydrophobic interaction between the alkyl chains, affecting the intercalation of the organic acid anions. The uptake of N,N-dimethylaniline (DMA) by Mg–Al LDHs increased in the order PS·Mg–Al LDH < HS·Mg–Al LDH < DS·Mg–Al LDH. The uptake was attributed to the hydrophobic interactions between DMA and the intercalated PS?, HS?, and DS?. Thus, Mg–Al LDH, which has a lot of large interlayer spacings when intercalated with organic acid anions, can take up a large number of DMA molecules from an aqueous solution.  相似文献   

5.
己二酸柱撑水滑石的制备及表征   总被引:11,自引:0,他引:11  
水滑石(Layered Double Hydroxidex,简称LDHs)是一类具有层状结构的阴离子型粘土^[1]。水滑石的一个重要性质是层间阴离子具有可交换性,引入不同的阴离子,能够得到不同结构和功能和柱撑水石滑,因而阴离子插层是水滑石研究的一个重要方向。各类阴离子如有机和无机阴离子、同多和杂多阴离子以及金属配合物阴离子的柱撑水滑石在文献中都有报道^[2-5]。其中有机阴离子由于在结构上的多样性,使有机阴离子柱撑水滑石具有巨大的应用开发潜力,已经引起了人们的广泛关注^[6-12]。  相似文献   

6.
Layered double hydroxides (LDHs) with Mg/Al, Zn/Al, Ca/Al metal hydroxide layers, and a Zn/Ni hydroxy double salt (HDS) were prepared with a common anion, dodecyl sulfate [CH3(CH2)10COO?, DS]. The LDH and HDS additives were melt blended with poly(methyl methacrylate) (PMMA). The dispersion and morphology were characterized via X‐ray diffraction (XRD) and transmission electron microscopy. Mg/Al‐DS and Zn/Al‐DS LDHs were found to form nanocomposites with PMMA, exhibiting good dispersion and some degree of exfoliated morphology for the Zn/Al‐DS/PMMA combination and mixed intercalation and exfoliation behavior for Mg/Al‐DS in PMMA. The Ca/Al‐DS LDH and Zn/Ni‐DS HDS formed microcomposites with PMMA. Thermal stability was investigated via thermogravimetric analysis; each of the additives increased the thermal stability of PMMA. Cone calorimetry was used to measure the fire properties; the microcomposite of Zn/Ni‐DS HDS at 10% loading provided the best improvement in peak heat release rate, with a 40% reduction over the pure polymer. The residue composition after burning the composites was investigated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Thermogravimetric analysis (TG) and powder X-ray diffraction (PXRD) were used to study some selected Mg/Al and Zn/Al layered double hydroxides (LDHs) prepared by co-precipitation. A Mg/Al hydrotalcite was investigated before and after reformation in fluoride and nitrate solutions. Little change in the TG or PXRD patterns was observed. It was proposed that successful intercalation of nitrate anions has occurred. However, the absence of any change in the d (003) interlayer spacing suggests that fluoride anions were not intercalated between the LDH layers. Any fluoride anions that were removed from solution are most likely adsorbed onto the outer surfaces of the hydrotalcite. As fluoride removal was not quantified it is not possible to confirm that this has happened without further experimentation. Carbonate is probably intercalated into the interlayer of these hydrotalcites, as well as fluoride or nitrate. The carbonate most likely originates from either incomplete decarbonation during thermal activation or adsorption from the atmosphere or dissolved in the deionised water. Small and large scale co-precipitation syntheses of a Zn/Al LDH were also investigated to determine if there was any change in the product. While the small scale experiment produced a good quality LDH of reasonable purity; the large scale synthesis resulted in several additional phases. Imprecise measurement and difficulty in handling the large quantities of reagents appeared to be sufficient to alter the reaction conditions causing a mixture of phases to be formed.  相似文献   

8.
Surfactant-intercalated MgFe-layered double hydroxides (MgFe-LDHs) were successfully synthesized via one-step self-assembly of the surfactants (sodium dodecyl sulfate, 1-hexadecane sulfate, and sodium dodecyl benzene sulfonate) and the LDH precursors without avoiding dissolved CO3 2?. As a control, p-toluene sulfonic acid was used to further study the functions of surfactants. The detailed characterization of the surfactant intercalated MgFe-LDHs and their intermediates confirm that the basal spacing changes of the formed LDHs derive from the release of surfactants out of LDH interlayers or the adsorption of surfactants from the solution in the reaction. Besides, the Mg/Fe ratio of the LDH sheets increases with the reaction and the corresponding ionic exchange capacity (IEC) of the MgFe-LDHs decreases. The final surfactant intercalated MgFe-LDH particles are the mixture of MgFe-LDH sheets with different composition and IEC, which can be the basic principle of LDH preparation for different applications. Also the Mg/Fe ratio of the surfactant intercalated MgFe-LDHs decreases with the increase of molecular length of surfactants used.  相似文献   

9.
In our work, the synthesis and the structural properties of various layered double hydroxides (LDHs) were investigated. LDHs were prepared from metal salts with sodium hydroxide in aqueous medium at various molar ratios. Nitrate salts of, Mg2+, Ca2+, Co2+, Al3+ and acetate salt of Zn2+ were applied as precursors. The concentrations of LDH suspensions were in the range of 0.1–1 g/100 ml. The particle size and zeta-potential of LDH particles were measured by dynamic light scattering (DLS). The structure properties of LDHs were analyzed by several methods, namely XRD, UV-vis spectroscopy and AFM. We used the layer-by-layer dipping immersion technique and the spin coating method for the preparation of multilayer films from LDHs on glass surfaces. The cleaned glass surface has a negative surface charge, which is compensated by the positively charged LDH particles. Different negatively charged binders poly(sodium 4-styrenesulfonate), (PSS); poly(acryl-acid), (PAA) were utilized for the preparation of layer-by-layer films. Layer thickness was calculated from absorbance measurements by spectrophotometry and mass determination of the glass surface. Typical film thicknesses were in the range of 19–70 nm/layer and 6–40 μg/cm2/layer depending on the type of LDH and preparation technique. After n = 20 immersion cycles, maximal layer thickness was 1405 nm for 20 layers of 2:1 ZnAl–LDH/PSS film. The film preparation methods tested were compared and it was established that the films obtained by the layer-by-layer method are more stable but thicker than those prepared using the spin coating method.  相似文献   

10.
On intercalation ofp-toluenesulfonate (PTS) into Mg/Al (0.73/0.27) layered double hydroxide (LDH), the layer expanded from 4.77 Å to 17.7 Å, indicating that the plane of PTS was perpendicular to the plane of the LDH layers. Thermal treatment of the PTS intercalate resulted in 82% of the included PTS being evolved as decomposition products. This value was higher than the value of 32.5% obtained with sodium PTS and 43.8% with a mixed sample of PTS and Mg/Al (0.73/0.27) LDH. It was considered that the intercalated PTS in Mg/Al (0.73/0.27) LDH was easy to decompose because interaction between intercalated PTS and Mg/Al (0.73/0.27) LDH was smaller than that between sodium and PTS in sodium PTS.  相似文献   

11.
Heavy metal ions are toxic, and their toxicities change with different valence states, charges, and radii. Among the methods used for heavy metal ion removal, adsorption is widely employed due to its low cost and simple operation. As natural anionic clays, layered double hydroxides (LDHs) have drawn considerable attention for their use in the removal of anionic pollutants (such as heavy metal anions) due to their high removal efficiency and environmental friendliness. This article reviews the effects of the charge, type, and radius of the cations in the laminates of LDHs and the anions in the LDH interlayers, as well as the charge and radius of the heavy metals and the conditions (such as pH, coexisting ions, and temperature) on removing heavy metal ions with LDHs. The removal mechanisms have also been discussed. LDHs are hugely promising as an application for removing heavy metal ions that exist in different ionic forms by controlling the type and condition of LDHs.  相似文献   

12.
Fire and thermal properties of ethylene vinyl acetate (EVA) composites prepared by melt blending with layered double hydroxides (LDH) have been studied. Two types of LDHs intercalated with borate anion were prepared using the coprecipitation method and the metals Mg2+, Zn2+ and Al3+. Characterization of the LDHs and the EVA composites was performed using X-ray diffraction, thermogravimetric analysis, and cone calorimetry. Thermal analyses show that the addition of LDHs improves the thermal stability of EVA. Fire properties evaluated using the cone calorimeter were significantly improved in the EVA/LDH composites. The peak heat release rate was reduced by about 40% when only 3% by weight of the LDH was added to the copolymer. Comparison of the fire properties of the LDHs with those of aluminum trihydrate (ATH), magnesium hydroxides (MDH), zinc hydroxide (ZH) and their combinations at 40% loading, reveal that the LDHs were more effective than when MDH and ZH are used alone.  相似文献   

13.
A series of hybrid organic-inorganic nanocomposite materials was synthesized by three different procedures using sodium dodecyl sulfate (DDS) and magnesium-aluminum layered double hydroxide (Mg/Al LDH with a Mg/Al molar ratio of 2 to 5). Both the pH of the exchange medium (6.5 to 10) and the Mg/Al molar ratio of the LDH affected the basal spacing, the content of DDS retained and the orientation of the DDS chains within the interlamellar space. For LDH with higher charge density (Mg/Al=2 and 3), DDS molecules likely formed a perpendicular monolayer within the LDH interlayer and the solution pH had little effect on the basal spacing, with a mean and standard deviation of 25.5+/-0.4 A. However, for LDH with lower charge density (Mg/Al=4 and 5), DDS molecules more likely formed an interpenetrating bilayer, and the basal spacing significantly increased with increasing pH, with a mean and standard deviation of 32.7+/-5.2 A. Sorption of trichloroethylene and tetrachloroethylene by DDS-LDH varied with synthesis conditions, LDH type and DDS configuration in the interlayer. DDS-Mg(3)Al-LDH had the highest affinity for both trichloroethylene and tetrachloroethylene in water, either comparable to or as much as four times higher than other clay-derived sorbents, followed by DDS-Mg(4)Al-LDH and DDS-Mg(5)Al-LDH. DDS-Mg(2)Al-LDH had the lowest sorption affinity although the highest amount of DDS. The pH of the exchange solution also affected the amount of DDS retained by the LDH as well as the sorption efficiency. Mg(3)Al-LDH has a charge equivalent area of 32.2 A(2)/charge, which allows the formation of optimal DDS configuration within its interlayer, thus resulting in the highest affinity for the chlorinated compounds. The DDS-Mg/Al-LDHs can be easily synthesized either ex situ or in situ at low temperature, indicating the feasibility of practical applications. The results obtained by controlling the synthesis procedure suggest that different arrangements of DDS molecules in the LDH interlayers can be obtained and optimized for the sorption of specific sorbates.  相似文献   

14.
Mg–Al–Fe ternary layered double hydroxides (LDHs) were synthesized based on Bayer red mud by a calcination–rehydration method, and characterized by X-ray diffraction (XRD) and thermogravimetric analysis (TG). The synergistic effects between melamine and LDHs in ethylene–vinyl acetate (EVA) composites were studied using limiting oxygen index (LOI), UL 94, cone calorimeter test (CCT), smoke density test (SDT), and thermogravimetry–fourier transform infrared spectrometry (TG–IR). Though melamine decreases the LOI values of EVA/LDHs/melamine composites, a suitable amount of melamine can apparently improve UL 94 rating; the composite with 45 % LDHs and 5 % melamine can pass UL 94 test. The CCTs results indicate that heat release rates (HRR) of EVA/LDHs/melamine composites decreased in comparison with that of EVA/LDHs composites. The SDT results show that melamine is helpful to smoke suppression. The TG–IR data show that the ternary composites have a higher thermal stability than that of the binary composites.  相似文献   

15.
Mg‐Al‐Fe ternary‐layered double hydroxides (LDHs) were synthesized by a calcination‐rehydration method using Bayer red mud. The products were characterized using X‐ray diffraction and thermogravimetric analysis. The flammability and thermal degradation of ethylene‐vinyl acetate/layered double hydroxides/zinc borate (EVA/LDHs/ZB) composites were studied with limiting oxygen index, UL 94, cone calorimeter test, smoke density test, and thermogravimetry‐Fourier transform infrared spectrometry. Although limiting oxygen index value of the composites decreased with increasing ZB amount, a suitable addition of ZB can apparently improve the UL 94 rating of the material. The heat release rate of the 5% ZB containing ternary composites decreased compared with the EVA/LDHs composites. It is obtained from smoke density test that ZB could help smoke suppression. The ternary composites possessed a higher thermal stability than the EVA/LDHs composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Two layered double hydroxides (LDHs), calcium aluminum undecenoate (Ca3Al) and calcium iron undecenoate (Ca3Fe), have been prepared by the co-precipitation method. XRD analysis of these LDHs reveals that they are layered materials and FT-IR and TGA confirmed the presence of the undecenoate anions in the material produced. The PMMA composites were prepared by bulk polymerization and the samples were characterized by XRD, TEM, TGA and cone calorimetry. Both additives greatly enhance the thermal stability of PMMA, while the calcium aluminum LDH gives better results when the fire properties were examined using the cone calorimeter.  相似文献   

17.
The effects of the modified layered double hydroxide (LDH) of Co/Al (OCoAl‐LDH) and the modified LDH of Co/Fe (OCoFe‐LDH) on the combustion behaviors of polyvinyl chloride (PVC) during pyrolysis processes were compared and investigated. The thermal degradation and combustion behavior of the PVC composites were investigated by thermogravimetric analysis (TGA), microscale combustion calorimetry (MCC), and cone calorimetry (CONE). The results indicate that the incorporation of LDHs brought about the improved thermal stability and reduced heat release of PVC composites at a high temperature. The smoke‐suppression properties of the composites are investigated by steady‐state tube furnace (SSTF), and the results indicated that the toxic gases such as CH4, CO, and NxO were inhibited by both of the two LDHs, but the OCoFe‐LDH has a better effect on the smoke suppression. Subsequently, the char layer was investigated by scanning electron microscopy–energy‐dispersive spectrometry (SEM‐EDS) and Raman analysis. The results indicate that the LDHs can promote the dechlorination of PVC during the thermal oxidation process and can inhibit the production of HCl in inert gas. Generally, OCoAl‐LDH and OCoFe‐LDH can be potential catalysts for waste disposal and can improve the fire safety of PVC.  相似文献   

18.
A series of Mg-Al-Eu ternary hydrotalcite-like layered double hydroxides (LDHs), with Eu/Al atomic ratios of ∼0.06 and Mg/(Al+Eu) atomic ratios ranging from 1.3 to 4.0, were synthesized by a coprecipitation method. The Mg-Al-Eu ternary LDHs were investigated by various techniques. X-ray diffraction (XRD) results indicated that the crystallinity of the ternary LDHs was gradually improved with the increase of Mg2+/(Al3++Eu3+) molar ratio from 1.3/1 to 4/1, and all the samples were a single phase corresponding to LDH. The photoluminescent (PL) spectra of the ternary Mg-Al-Eu LDHs were described by the well-known 5D0-7FJ transition (J=1, 2, 3, 4) of Eu3+ ions with the strongest emission for J=2, suggesting that the host LDH was favorable to the emissions of Eu3+ ions. The asymmetry parameter (R) relevant to 5D0-7FJ transition (J=1, 2) dependant of the atomic ratios of Mg2+/(Al3++Eu3+) was discussed, and was consistent with the result of XRD.  相似文献   

19.
The pillaring of Mg(3)Al layered double hydroxides (LDHs) by the title polyoxometalates (POMs) was accomplished by ion exchange reaction of the LDH-hydroxide and -adipate precursors with the POM anion at ambient or refluxing temperatures. The structural, thermal and textural properties of the LDH-POM intercalates were elucidated based on XRD, FTIR, TEM, EDS, and N(2) adsorption-desorption studies. A gallery height of approximately 10 ? was observed for the LDH intercalated by the symmetrical Keggin POM, whereas two different gallery heights were found for the cylindrical Dawson (14.5 and 12.8 ?) and Finke (13.3 and 12.6 ?) anions, depending on the preparation temperature. The differences in POM orientations were rationalized in terms of different electrostatic and hydrogen-bonding interactions between the POM pillars and the LDH layers. Upon thermal treatment at >/=100 degrees C, the intercalated Dawson and Finke POM ions exhibited only one gallery orientation, regardless of synthesis conditions. The crystalline microporous structures were retained upon heating each LDH-POM intercalate in N(2) to 200 degrees C. Pillaring in all cases was accompanied by the formation of a poorly ordered Mg(2+)/Al(3+) salt impurity that formed on the external surfaces of the LDH crystals.  相似文献   

20.
An Mg/Al layered double hydroxide (LDH) containing carbonate ion in its interlayer region was examined by medium infrared (MIR) and near infrared reflectance spectroscopy (NIRS). The MIR and NIR spectroscopy techniques was also used to study two organo-hybrid LDHs containing interlayer dodecylbenzenesulphonate (DBS) and dodecylsulphate (DS) ions, respectively. The NIR spectra for the latter solids were found to exhibit the overtone and combination bands for the hydroxyl groups in addition to those typical bands of the organic host functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号