首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The electric and magnetic properties of the perovskites Nd0.8Na0.2Mn(1−x)CoxO3 (0x0.2) prepared by the usual ceramic procedure were investigated. The insulator-to-metal-like (IM) transition, closely related to a ferromagnetic arrangement, was revealed for the composition of x=0.04 and a similar tendency was detected for x=0. The insulating behavior persists down to low temperatures for higher contents of cobalt ions in spite of the transition to the bulk ferromagnetism. The properties are interpreted in terms of the steric distortion, tilting of the Mn(Co)O6 octahedra and the double-exchange interactions of the type Mn3+–O2−–Mn4+and Mn3.5+δ–O2−–Co2+, respectively. Presence of antiferromagnetic domains in the ferromagnetic matrix for the most of cobalt-substituted samples is supposed.  相似文献   

2.
The in situ behavior of distorted perovskite La0.5−xBixCa0.5MnO3 (x=0.1, 0.15, 0.2) under high pressure has been studied by energy-dispersive X-ray diffraction in a diamond anvil cell. An abnormal change of the 202–040 d-spacing ascribed to the disappearance of the distortion mode Q2 in the MnO6 octahedra is observed at 1.2, 1.4, and 1.6 GPa, respectively, and it results in a reduction of the Jahn–Teller distortion commonly existing in the manganites. Effect of the unique 6s2 long-pair character of the Bi3+ ion on the pressure dependence of the lattice distortion is discussed.  相似文献   

3.
The phase composition and electroconduction in air of solid electrolytes (Ce0.8Sm0.2)1 − x CuxO2 − δ (CSCu), where x = 0, 2, 5, 10, and 20 mol % and which are synthesized using the ceramic technology, are studied. Adding an additive of CuO lowers the CSCu sintering temperature by 100– 200°C and leads to the formation of single-phase solid solutions of a fluorite type up to x = 10 mol %. The electroconductivity of the CSCu electrolytes remains practically invariant upon adding up to 5 mol % Cu and equals 0.089–0.095 and 0.017–0.021 S cm−1 at 800 and 600°C. The sintering, adhesion, and electroconductance of composite cathodes based on La0.8Sr0.2MnO3 with 40% CSCu and their electrochemical behavior in air in the temperature interval 900–1000°C on carrying electrolyte Zr0.9Y0.1O1.95 with a CSCu sublayer containing 2 mol % Cu are studied.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 656–661.Original Russian Text Copyright © 2005 by Bogdanovich, Gorelov, Balakireva, Dem’yanenko.  相似文献   

4.
Recently, the ferroelectromagnet YMnO3 has been the focus of interest because it exhibits both antiferromagnetism (Néel temperature 80 K) and ferroelectricity (Curie temperature 914 K). There have been no reports of complete YMn1−xMxO3 solid solutions in which substitution of the foreign M cation preserves the hexagonal P63cm structure. In contrast there exist several homeotypic phases with the general formula, Ln1+nCunMO3+3n (n=1 (M=Ti), 2 (M=V) and 3 (M=Mo); Ln: lanthanide). Several YMn1−x(Cu3/4Mo1/4)xO3 compounds have been synthesized. The solid solution, from YMnO3 (x=0) to YCu3/4Mo1/4O3 (x=1) has been characterized by X-ray diffraction and transmission electron microscopy study. For 0<x<0.9, the compounds are found to crystallize in the non-centrosymmetric structure, space group P63cm, of YMnO3. The Mn-free end member, x=1, crystallizes in a complex multiple cell, the superstructure being associated to Cu3+/Mo6+ cationic ordering. Dilution of the Mn3+ magnetic array by the paramagnetic (Cu2+) and diamagnetic (Mo6+) cations is found to decrease the antiferromagnetic ordering temperature and it becomes undetectable for x0.5 compositions.  相似文献   

5.
The compositions in the YBa2−xLaxCu3O7−δ (0x0.2) system were prepared by the solid state reaction, employing a novel high-temperature oxygen sintering route. The modified sintering route yields dense slab like microstructures with large grains. The decomposition (incongruent melting) temperature of the YBa2Cu3O7−δ (Y-123) phase was found to shift to higher temperatures with increasing oxygen partial pressure and lanthanum content. Structure remained orthorhombic up to x=0.2 with a decrease in the orthorhombic strain ((ba)/b). Iodometric titration indicated a systematic increase in the oxygen content with increasing lanthanum content. Thermo-gravimetric studies in various oxygen partial pressures revealed that the oxygen diffusion in to the YBa2Cu3O7−δ (δ>0.5) lattice is an exothermic event and takes place at temperatures not less than 573 K. High-temperature thermal-expansion measurements in air indicated that the nonlinearity in thermal expansion behaviour was reduced by the substitution of lanthanum.  相似文献   

6.
n-Type (Bi2Te3)0.9–(Bi2−xCuxSe3)0.1 (x=0–0.2) alloys with Cu substitution for Bi were prepared by spark plasma-sintering technique and their structural and thermoelectric properties were evaluated. Rietveld analysis reveals that approximate 9.0% of Bi atomic sites are occupied by Cu atoms and less than 4.0 wt% second phase Cu2.86Te2 precipitated in the Cu-doped parent alloys. Measurements show that an introduction of a small amount of Cu (x0.1) can reduce the lattice thermal conductivity (κL), and improve the electrical conductivity and Seebeck coefficient. An optimal dimensionless figure of merit (ZT) value of 0.98 is obtained for x=0.1 at 417 K, which is obviously higher than those of Cu-free Bi2Se0.3Te2.7 (ZT=0.66) and Ag-doped alloys (ZT=0.86) prepared by the same technologies.  相似文献   

7.
The space group symmetry and crystal structure of Tl3SbS3−xSex compounds in the composition range 0 < x < 3 have been determined by a combination of powder X-ray diffraction, electron diffraction, and high-resolution electron microscopy. The incongruently melting compound Tl3SbSe3 has been shown to crystallize in cubic space group P213 with a = 9.435Å in a structure related to that of Langbeinite. The convergent beam electron diffraction pattern of Tl3SbS3 is in accord with the space group R3m determined by X-ray diffraction. The cubic Langbeinite-type structure is found for Tl3SbS3−xSex for 0.5 < x < 3 and for Tl3SbyAs1−ySe3 for 0.077 < y < 1.0. A five-component compound Tl3Sb0.5As0.5Se1.5S1.5 was also found to be cubic.  相似文献   

8.
In order to elucidate the correlation between the relaxor type of phase transition and the percent of the A and B site substitution in the Ba1−xNaxTi1−xNbxO3 solid solution, the dielectric permittivity was carried out in the temperature range 80–600 K. All ceramics of these solid solutions present a ferroelectric–paraelectric phase transition with relaxor and classical character depending on the value of x. With increasing x the three phase transition of pure BaTiO3 are pinched into one rounded dielectric peak, and there is evidence for Vogel–Fulcher type relaxational freezing. Raman spectra of the x=0.3 and x=0.7 compositions taken at various temperatures and measured over the wavenumber range 100–1200 cm−1 confirm that the first order scattering is dominant in phonon bands resulting from both ordered region and disordered matrix.  相似文献   

9.
For La1−xThxNbO4+x/2, three phases with broad homogeneity regions occur, for 0.075 ≤ x ≤ 0.37, 0.41 < x < 0.61, and 0.65 ≤ x ≤ 0.74. All are related to the scheelite structure type, with at least the first exhibiting an incommensurate structural modulation. An analogous structurally modulated phase was found for LaNb1−xWxO4+x/2 for 0.11 ≤ x ≤ 0.22. Additional phases occur at La0.2Th0.8NbO4.4 and LaNb0.4W0.6O4.3. The electrical conductivity and the direction and wavelength of the structural modulation have been characterized for the La1−xThxNbO4+x/2 phase with 0.075 ≤ x ≤ 0.37.  相似文献   

10.
The new ternary phases Zr4−xTa1+xGe4 (0.1<x<0.4) and Zr2+xTa3−xGe4 (0.1<x<1.1) were prepared from the elements by arc melting and subsequent induction heating at 1400–1450°C. Single-crystal X-ray diffraction was used to determine their structures and to refine mixed site occupancies. Zr4−xTa1+xGe4 was found to crystallize in the monoclinic space group P21/c (structure type: U2Mo3Si4) and the compound Zr2−xTa3−xGe4 shows orthorhombic symmetry (space group Pnma, structure type: Sm5Ge4). The close structural relationship between the two structures is discussed. Both phases exhibit pronounced differential fractional site occupancy of Ta and Zr on the metal sites and considerable composition ranges. Extended Hückel calculations were performed for various site occupancy models and Mulliken overlap populations for the different lattice sites of each structure were calculated for these models. The correlation of the cumulated Mulliken overlap populations and the atomic orbital populations with the actual site occupancies is discussed.  相似文献   

11.
The mixed lead nitrate oxalate, Pb2(NO3)2(C2O4).2H2O, has been obtained in a polycrystalline form in the course of a study on precursors of nanocrystalline PZT-type oxides. Its crystal structure has been solved from powder diffraction data collected using a monochromatic radiation from a conventional X-ray source. The symmetry is monoclinic, space group P21/c (No. 14), the cell dimensions are a=10.623(2) Å, b=7.9559(9) Å, c=6.1932(5) Å, β=104.49(1)° and Z=4. The structure consists of a stacking of complex double sheets parallel to (1 0 0), forming layers held together by hydrogen bonds. The sheets result from the condensation of PbO10 polyhedra, in which the oxalate and nitrate groups, as well as water molecules, play a major role. The structure is discussed in terms of Pb---O distances, polyhedra shape and lead coordination, with emphasis on the dimensional polymerisation role of water molecules. The thermal behaviour of this layered compound is carefully described from temperature-dependent powder diffraction and thermogravimetric measurements. The enthalpy, ΔrH=232(3) kJ mol−1, and entropy, ΔrS=532(8) J K−1 mol−1, of the dehydration reaction have been determined. The high value of ΔrH demonstrates that the water molecules are strongly bonded in the structure. The complex decomposition proceeds through the crystallisation and decomposition of Pb(NO3)2(C2O4) into Pb(NO3)2 and PbC2O4, and, finally, various lead oxides.  相似文献   

12.
The phase relations in the system In2O3–TiO2–MgO at 1100 and 1350°C are determined by a classical quenching method. In this system, there are four pseudobinary compounds, In2TiO5, MgTi2O5 (pseudobrookite type), MgTiO3 (ilmenite type), and Mg2TiO4 (spinel type) at 1100°C. At 1350°C, in addition to these compounds there exist a spinel-type solid solution Mg2−xIn2xTi1−xO4 (0≤x≤1) and a compound In6Ti6MgO22 with lattice constants a=5.9236(7) Å, b=3.3862(4) Å, c=6.3609(7) Å, β=108.15(1)°, and q=0.369, which is isostructural with the monoclinic In3Ti2FeO10 in the system In2O3–TiO2–MgO. The relation between the lattice constants of the spinel phase and the composition nearly satisfies Vegard's law. In6Ti6MgO22 extends a solid solution range to In20Ti17Mg3O67 with lattice constants of a=5.9230(5) Å, b=3.3823(3) Å, c=6.3698(6) Å, β=108.10(5)°, and q=0.360. The distributions of constituent cations in the solid solutions are discussed in terms of their ionic radius and site preference effect.  相似文献   

13.
A new electroanalytical methodology was developed for the quantification of the phytohormone indole-3-acetic acid (IAA), using a graphite–polyurethane composite electrode (GPU) and the square wave voltammetry (SWV), in 0.1 mol L− 1 phosphoric acid solution (pH 1.6). Analytical curves were constructed under optimized conditions (f = 100 s− 1, a = 50 mV, Ei = 5 mV) and the reached detection and quantification limits were 26 μg L− 1 and 0.2 mg L− 1, respectively. The developed methodology is simple and accurate for the routine determination of IAA. In order to verify the application of the electroanalytical methodology in fortified soil samples without previous treatment, an IAA assay was performed without serious interferences of the soil constituents.  相似文献   

14.
Crystal structure, redox, and magnetic properties for the Pr1−xSrxFeO3−δ solid-solution phase have been studied. Oxidized samples (prepared in air at 900°C) crystallize in the GdFeO3-type structure for 0≤x≤0.80, and probably in the Sr8Fe8O23-type (unpublished) structure for x=0.90. Reduced samples (containing virtually only Fe3+) crystallize as the perovskite aristotype for x=0.50 and 0.67 with randomly distributed vacancies. The Fe4+ content increases linearly in the oxidized samples up to x≈0.70, whereupon it stabilizes at around 55%. Antiferromagnetic ordering of the G type is observed for oxidized samples (0≤x≤0.90) which show decreasing Néel temperature and ordered magnetic moment with increasing x, while the Néel temperature is nearly constant at 700 K for reduced samples. Electronic transitions for iron from an average-valence state via charge-separated to disproportionated states are proposed from anomalies in magnetic susceptibility curves in the temperature ranges 500–600 K and 150–185 K.  相似文献   

15.
The possibility to synthesize layered oxycarbonates, with nominal composition Sr4Fe2−xMnxO6CO3 involving trivalent manganese, with 0≤x≤1.5, is reported for the first time. The structural study of Sr4FeMnO6CO3 using NPD, HREM, Mössbauer and XANES, shows that this phase is closely related to n=3 member of the Ruddlesden–Popper family. It derives from the latter by replacing the middle layer of transition metal octahedra by triangular CO3 groups, with two different “flag” and “coat hanger” configurations. The magnetic order is antiferromagnetic and fundamentally different from the magnetic behavior of Sr4Fe2O6CO3.  相似文献   

16.
The electroconductivity and the nature of conduction of vacuum-dense ceramics BaPr1 – x Y x O3 – (x= 0.05–0.15) is studied at temperatures of 373 to 985°C, of 2.1 × 104to 10–11Pa, and of 40 to 2400 Pa. The coefficient of linear thermal expansion is measured. The ceramics have a perovskite structure and are practically p-type semiconductors with a maximum conductivity of 0.26 S cm–1at x= 0.10 and 800°C, in air. The share of ionic (proton) conductivity of the ceramics does not exceed 0.2–0.4%. The conductivity is weakly dependent on the air humidity. In a hydrogen-containing atmosphere, the ceramics undergoes reduction with destruction. Boundaries of thermodynamic stability of BaPr0.9Y0.1O3 – at 500–900°C are determined.  相似文献   

17.
La1−x(PO3)3:Tbx3+ (0<x0.6) were prepared using solid-state reaction. The vacuum ultraviolet (VUV) excitation spectrum of La0.55(PO3)3:Tb0.453+ indicates that the absorption of (PO3)33− groups locates at about 163 and 174 nm and the absorption bands of (PO3)33− groups (174 nm) and La3+–O2− (200 nm) and Tb3+ (213 nm) overlap each other. These results imply that the (PO3)33− groups can efficiently absorb the excited energy around 172 nm and transfer the energy to Tb3+. Under 172 nm excitation, the optimal photoluminescence (PL) intensity is obtained when Tb concentration reaches 0.45 and is about 71% of commercial phosphor Zn1.96SiO4:0.04 Mn2+ with chromaticity coordinates of (0.343, 0.578) and the decay time of about 4.47 ms.  相似文献   

18.
The structures of several Ga2O3–In2O3–SnO2 phases were investigated using high-resolution electron microscopy, X-ray diffraction, and Rietveld analysis of time-of-flight neutron diffraction data. The phases, expressed as Ga4−4xIn4xSnn−4O2n−2 (n=6 and 7–17, odd), are intergrowths between the β-gallia structure of (Ga,In)2O3 and the rutile structure of SnO2. Samples prepared with n≥9 crystallize in C2/m and are isostructural with intergrowths in the Ga2O3–TiO2 system. Samples prepared with n=6 and n=7 are members of an alternative intergrowth series that crystallizes in P2/m. Both intergrowth series are similar in that their members possess 1-D tunnels along the b axis. The difference between the two series is described in terms of different crystallographic shear plane operations (CSP) on the parent rutile structure.  相似文献   

19.
In order to check the extended defect model previously proposed for the nonstoichiometric perovskite AnMnO3n−1 (n 2), the Ca2Ti2−2xFe2xO6−x solid solution has been studied by means of X-ray diffraction and electron microscope investigations. The results show the existence of a continuous evolution (0 x 1) with two different regions. Close to the CaTiO3 composition (0 x 0.40) the oxygen vacancies seem to be randomly distributed and the symmetry remains pseudocubic. In the composition range 0.55 x 1, the electron microscope patterns show an ordering of the defects: the oxygen vacancies are ordered in the (0k0) planes in strings parallel to the [101] direction. It is concluded from these observations that perpendicular to the Oy direction isolated planes of tetrahedra arranged in rows separate planes of corner-linked octahedra. The n = 2; 2.5; 3, et 4 terms of the AnMnO3n−1 series have been identified. C.S. planes characteristic of classical nonstoichiometric oxides with small cations do not appear: instead, tetrahedra planes succeed to the previous octahedra planes as the degree of nonstoichiometry increases.

Résumé

Afin de vérifier le modèle de non-stoechiométrie proposé dans un travail précédent pour les perovskites lacunaires AnMnO3n−1 (n 2), la solution solide Ca2Ti2−2xFe2xO6−x a été, étudiée par diffraction X et microscopie électronique. Les résultats montrent l'existence d'une évolution continue (0 x 1) avec deux domaines différents. Pour les compositions proches de CaTiO3 (0 x 0.40), les lacunes oxygénées semblent être distribuées statistiquement et la symétrie demeure pseudocubique. Dans le domaine de compositions 0.55 x 1, les images de microscopie électronique montrent un ordre des défauts: les lacunes d'oxygène sont ordonnées dans les plans (0k0) en rangées parallèles à la direction [101]. Ces observations ont permis de conclure que perpendiculairement à la direction Oy des plans isolés de files de tétraèdres séparent des plans d'octaèdres liés par leurs sommets. Les termes n = 2; 2.5; 3 et 4 des séries AnMnO3n−1 ont été identifiés. Des plans de cisaillement rencontrés dans les oxydes non-stoechiométriques classiques de petits cations n'ont pas été mis en évidence: par contre, des plans de tétraèdres se substituent aux plans d'octaèdres initiaux lorsque le degré de non-stoechiométrie augmente.  相似文献   

20.
The non-isothermal crystallization of α-Fe from Fe81B13Si4C2 amorphous alloy was investigated. The kinetic parameters of crystallization process were determined by Kissinger and Kissinger–Akahira–Sunose (KAS) methods. It was established that the kinetic parameters of transformation do not change with the degree of crystallization in the range of 0.1–0.7. The kinetic model of the crystallization process was determined using the Malek's procedure. It was established that the primary crystallization α-Fe phase from amorphous alloy can be described by Šesták–Berggren autocatalytic model with kinetic triplet Ea = 349.4.0 kJ mol−1, ln A = 50.76 and f(α) = α0.72(1 − α)1.02.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号