首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Recently, we developed a selective and efficient method of hydrogen‐deuterium exchange (HDX) at the α‐carbon (α‐C) of sarcosine residue (N‐methylglycine) in model peptides [B?chor et al. J. Mass Spectrom. 2014, 49, 43]. Here, we report the influence of quaternary ammonium (QA) group on HDX at the α‐C of sarcosine and N‐methylalanine in peptides. The obtained results suggest a significant acceleration of the HDX in sarcosine residue caused by the presence of QA. The effect depends on the distance between the sarcosine residue and QA moiety. The deuterons, introduced at α‐C, are resistant to the back‐exchange in acidic aqueous solution. The collision induced dissociation of the deuterium‐labeled analogs of QA‐tagged oligosarcosine peptides without mobile hydrogen revealed the mobilization of the hydrogens localized at α‐C of sarcosine residue. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Glycine (Gly) is incorporated in roughly half of all known peptaibiotic (nonribosomally biosynthesized antibiotic peptides of fungal origin) sequences and is the residue with the greatest conformational flexibility. The conformational space of Aib (α‐aminoisobutyric acid) is severely restricted by the second methyl group attached to the Cα atom. Most of the crystal structures containing Aib are N‐terminal protected. Deprotection of the N‐ or C‐terminus of peptides may alter the hydrogen‐bonding scheme and/or the structure and may facilitate crystallization. The structure reported here for glycyl‐α‐aminoisobutyrylglycyl‐α‐aminoisobutyric acid tert‐butyl ester, C16H30N4O5, describes the first N‐terminal‐unprotected (Gly‐Aib)n peptide. The achiral peptide could form an intramolecular hydrogen bond between the C=O group of Gly1 and the N—H group of Aib4. This hydrogen bond is found in all tetrapeptides and N‐terminal‐protected tripeptides containing Aib, apart from one exception. In the present work, this hydrogen bond is not observed (N...O = 5.88 Å). Instead, every molecule is hydrogen bonded to six other symmetry‐related molecules with a total of eight hydrogen bonds per molecule. The backbone conformation starts in the right‐handed helical region (and the left‐handed helical region for the inverted molecule) and reverses the screw sense in the last two residues.  相似文献   

3.
Twelve peptides, 1 – 12 , have been synthesized, which consist of alternating sequences of α‐ and β‐amino acid residues carrying either proteinogenic side chains or geminal dimethyl groups (Aib). Two peptides, 13 and 14 , containing 2‐methyl‐3‐aminobutanoic acid residues or a ‘random mix’ of α‐, β2‐, and β3‐amino acid moieties were also prepared. The new compounds were fully characterized by CD (Figs. 1 and 2), and 1H‐ and 13C‐NMR spectroscopy, and high‐resolution mass spectrometry (HR‐MS). In two cases, 3 and 14 , we discovered novel types of turn structures with nine‐ and ten‐membered H‐bonded rings forming the actual turns. In two other cases, 8 and 11 , we found 14/15‐helices, which had been previously disclosed in mixed α/β‐peptides containing unusual β‐amino acids with non‐proteinogenic side chains. The helices are formed by peptides containing the amino acid moiety Aib in every other position, and their backbones are primarily not held together by H‐bonds, but by the intrinsic conformations of the containing amino acid building blocks. The structures offer new possibilities of mimicking peptide–protein and protein–protein interactions (PPI).  相似文献   

4.
Galactosaminogalactan (GAG) is a prominent cell wall component of the opportunistic fungal pathogen Aspergillus fumigatus. GAG is a heteropolysaccharide composed of α‐1,4‐linked galactose, galactosamine and N‐acetylgalactosamine residues. To enable biochemical studies, a library of GAG‐fragments was constructed featuring specimens containing α‐galactose‐, α‐galactosamine and α‐N‐acetyl galactosamine linkages. Key features of the synthetic strategy include the use of di‐tert‐butylsilylidene directed α‐galactosylation methodology and regioselective benzoylation reactions using benzoyl‐hydroxybenzotriazole (Bz‐OBt). Structural analysis of the Gal, GalN and GalNAc oligomers by a combination of NMR and MD approaches revealed that the oligomers adopt an elongated, almost straight, structure, stabilized by inter‐residue H‐bonds, one of which is a non‐conventional C?H???O hydrogen bond between H5 of the residue (i+1) and O3 of the residue (i). The structures position the C‐2 substituents almost perpendicular to the oligosaccharide main chain axis, pointing to the bulk solvent and available for interactions with antibodies or other binding partners.  相似文献   

5.
Five β‐peptide thioesters ( 1 – 5 , containing 3, 4, 10 residues) were prepared by manual solid‐phase synthesis and purified by reverse‐phase preparative HPLC. A β‐undecapeptide ( 6 ) and an α‐undecapeptide ( 7 ) with N‐terminal β3‐HCys and Cys residues were prepared by manual and machine synthesis, respectively. Coupling of the thioesters with the cysteine derivatives in the presence of PhSH (Scheme and Fig. 1) in aqueous solution occurred smoothly and quantitatively. Pentadeca‐ and heneicosapeptides ( 8 – 10 ) were isolated, after preparative RP‐HPLC purification, in yields of up to 60%. Thus, the so‐called native chemical ligation works well with β‐peptides, producing larger β3‐ and α/β3‐mixed peptides. Compounds 1 – 10 were characterized by high‐resolution mass spectrometry (HR‐MS) and by CD spectroscopy, including temperature and concentration dependence. β‐Peptide 9 with 21 residues shows an intense negative Cotton effect near 210 nm but no zero‐crossing above 190 nm, (Figs. 2–4), which is characteristic of β‐peptidic 314‐helical structures. Comparison of the CD spectra of the mixed α/β‐pentadecapeptide ( 10 ) and a helical α‐peptide (Fig. 5) indicate the presence of an α‐peptidic 3.613 helix.  相似文献   

6.
The NMR‐solution structure of an α‐heptapeptide with a central Aib residue was investigated in order to verify that, in contrast to β‐peptides, short α‐peptides do not form a helical structures in MeOH. Although the central Aib residue was found to induce a bend in the experimentally determined structure, no secondary structure typical for longer α‐peptides or proteins was found. A β2/β3‐nonapeptide with polar, positively charged side chains was subjected to NMR analysis in MeOH and H2O. Whereas, in MeOH, it folds into a 10/12‐helix very similar to the structure determined for a corresponding β2/β3‐nonapeptide with only aliphatic side chains, no dominant conformation could be determined in H2O. Finally, the NMR analysis of a β3‐icosapeptide containing the side chains of all 20 proteinogenic amino acids in MeOH is described. It revealed that this 20mer folds into a 314‐helix over its whole length forming six full turns, the longest 314‐helix found so far. Together, our findings confirm that, in contrast to α‐peptides, β‐peptides not only form helices with just six residues, but also form helices that are longer than helical sections usually observed in proteins or natural peptides. The higher helix‐forming propensity of long β‐peptides is attributed to the conformation‐stabilizing effect of the staggered ethane sections in β‐peptides which outweighs the detrimental effect of the increasing macrodipole.  相似文献   

7.
The 2‐(benzo[d]thiazole‐2′‐yl)‐N‐alkylanilines have previously revealed the presence of a strong intramolecular hydrogen bond. This in turn gives rise to a more complicated multiplet for the protons attached to the carbon adjacent to the amino group. This intramolecular hydrogen bond was investigated by a deuterium exchange experiment using heteronuclear NMR spectroscopy (1H, 13C, 15 N and 2H). We observed changes in the multiplet structure and chemical shifts providing further evidence that the deuterium replaces the hydrogen in the intramolecular hydrogen bond. A time course study of the D2O exchange confirmed the presence of a strong hydrogen bond. The comparison of the structures obtained by X‐ray crystallography showed a very small difference in planarity between the two‐substituted and four‐substituted amino compounds. In both the cases, the phenyl ring is not absolutely coplanar with the thiazole unit. The existence of this intramolecular hydrogen bond in 2‐(benzo[d]thiazole‐2′‐yl)‐N‐alkylanilines was further confirmed by single crystal X‐ray crystallography. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
We present a molecular‐dynamics simulation study of an α‐heptapeptide containing an α‐aminoisobutyric acid (=2‐methylalanine; Aib) residue, Val1‐Ala2‐Leu3‐Aib4‐Ile5‐Met6‐Phe7, and a quantum‐mechanical (QM) study of simplified models to investigate the propensity of the Aib residue to induce 310/α‐helical conformation. For comparison, we have also performed simulations of three analogues of the peptide with the Aib residue being replaced by L ‐Ala, D ‐Ala, and Gly, respectively, which provide information on the subtitution effect at C(α) (two Me groups for Aib, one for L ‐Ala and D ‐Ala, and zero for Gly). Our simulations suggest that, in MeOH, the heptapeptide hardly folds into canonical helical conformations, but appears to populate multiple conformations, i.e., C7 and 310‐helical ones, which is in agreement with results from the QM calculations and NMR experiments. The populations of these conformations depend on the polarity of the solvent. Our study confirms that a short peptide, though with the presence of an Aib residue in the middle of the chain, does not have to fold to an α‐helical secondary structure. To generate a helical conformation for a linear peptide, several Aib residues should be present in the peptide, either sequentially or alternatively, to enhance the propensity of Aib‐containing peptides towards the helical conformation. A correction of a few of the published NMR data is reported.  相似文献   

9.
Natriuretic peptides (NP) play important roles in human cardiac physiology through their guanylyl cyclase receptors NPR‐A and NPR‐B. Described herein is a bifunctional O‐glycosylated natriuretic peptide, TcNPa, from Tropidechis carinatus venom and it unusually targets both NPR‐A and NPR‐B. Characterization using specific glycosidases and ETD‐MS identified the glycan as galactosyl‐β(1‐3)‐N‐acetylgalactosamine (Gal‐GalNAc) and was α‐linked to the C‐terminal threonine residue. TcNPa contains the characteristic NP 17‐membered disulfide ring with conserved phenylalanine and arginine residues. Both glycosylated and nonglycosylated forms were synthesized by Fmoc solid‐phase peptide synthesis and NMR analysis identified an α‐helix within the disulfide ring containing the putative pharmacophore for NPR‐A. Surprisingly, both forms activated NPR‐A and NPR‐B and were relatively resistant towards proteolytic degradation in plasma. This work will underpin the future development of bifunctional NP peptide mimetics.  相似文献   

10.
Sarcosine, a potential biomarker of prostate cancer, has drawn great attention in recent years. However, controversial research keeps arising about its role as a biomarker that might come from the two isomers (α‐alanine and β‐alanine) of sarcosine due to their same molecular weight and similar properties, which could interfere with the accurate detection of sarcosine. In this study, a simple and sensitive method was developed for the detection of sarcosine and the two isomers by LC with ion‐trap MS through a novel derivatization reagent N,N′‐dicyclohexylcarbodiimide. N,N′‐Dicyclohexylcarbodiimide is usually considered as a condensation reagent, however, it was directly used as a derivatization reagent through a rearrangement side reaction in this study. The proposed method not only improved the chromatographic retention behavior of sarcosine and its two isomers, which was a benefit to their separation, but also dramatically enhanced the detection sensitivity of sarcosine, which was more favorable for real sample analysis. The factors affecting the productivity of the derivatization reaction, such as reaction time and amount of derivatization reagent, were systematically optimized. The method shows good linearity (R2 > 0.99), sensitivity with LODs of sarcosine as low as 1 ng/mL, and repeatability with the RSD < 6.07%. The developed method was applied to the analysis of urine.  相似文献   

11.
A variety of model peptides, including four complete homologous series, to the pentamer level, characterized by the recently proposed binaphthyl‐based, axially chiral, Cα‐tetrasubstituted, cyclic α‐amino acid Bin, in combination with Ala, Gly, or Aib residues, was synthesized by solution methods and fully characterized. The solution conformational propensity of these peptides was determined by FT‐IR absorption and 1H‐NMR techniques. Moreover, the molecular structures of the free amino acid (S)‐enantiomer and an Nα‐acylated dipeptide alkylamide with the heterochiral sequence ‐(R)‐Bin‐Phe‐ were assessed in the crystal state by X‐ray diffraction. Taken together, the results point to the conclusion that β‐bends and 310 helices are preferentially adopted by Bin‐containing peptides, although the fully extended conformation would also be adopted in solution by the short oligomers to some extent. We also confirmed the tendency of (R)‐Bin to fold a peptide chain into right‐handed bend and helical structures. The absolute configuration of the Bin residue(s) was correlated with the typically intense exciton‐split Cotton effect of the 1Bb binaphthyl transition near 225 nm.  相似文献   

12.
Novel three‐residue helix‐turn secondary structures, nucleated by a helix at the N terminus, were generated in peptides that have ‘β‐Caa‐L ‐Ala‐L ‐Ala,’ ‘β‐Caa‐L ‐Ala‐γ‐Caa,’ and ‘β‐Caa‐L ‐Ala‐δ‐Caa’ (in which βCaa is C‐linked carbo‐β‐amino acid, γCaa is C‐linked carbo‐γ‐amino acid, and δ‐Caa is C‐linked carbo‐δ‐amino acid) at the C terminus. These turn structures are stabilized by 12‐, 14‐, and 15‐membered (mr) hydrogen bonding between NH(i)/CO(i+2) (i+2 is the last residue in the peptide) along with a 7‐mr hydrogen bond between CO(i)/NH(i+2). In addition, a series of α/β‐peptides were designed and synthesized with alternating glycine (Gly) and (S)‐β‐Caa to study the influence of an achiral α‐residue on the helix and helix‐turn structures. In contrast to previous results, the three ‘β–α–β’ residues at the C terminus (α‐residue being Gly) are stabilized by only a 13‐mr forward hydrogen bond, which resembles an α‐turn. Extensive NMR spectroscopic and molecular dynamics (MD) studies were performed to support these observations. The influence of chirality and side chain is also discussed.  相似文献   

13.
In this study, (5α,7α)‐4,5‐epoxy‐3,6‐dimethoxy‐17‐methyl‐6,14‐ethenomorphinan‐7‐carboxylic acid hydrazide ( 5 ) was synthesized by the condensation of methyl (5α,7α)‐4,5‐epoxy‐3,6‐dimethoxy‐17‐methyl‐6,14‐ethenomorphinan‐7‐carboxylate ( 4 ) with NH2NH2⋅H2O. The (5α,7α)‐4,5‐epoxy‐3,6‐dimethoxy‐17‐methyl‐6,14‐ethenomorphinan‐7‐carboxylic acid 2‐[(arylamino)carbonyl]hydrazides 6a – 6q were prepared by the reaction of 5 with corresponding substituted aryl isocyanates, and the N‐{5‐[(5α,7α)‐4,5‐epoxy‐3,6‐dimethoxy‐17‐methyl‐6,14‐ethenomorphinan‐7‐yl]‐1,3,4‐oxadiazol‐2‐yl}arenamines 7a – 7q were obtained via the cyclization reaction of 6a – 6q in the presence of POCl3. The synthesized compounds have a rigid morphine structure, including the 6,14‐endo‐etheno bridge and the 5‐(arylamino)‐1,3,4‐oxadiazol‐2‐yl residue at C(7) adopting the (S)‐configuration (7α). The structures of the compounds were confirmed by high‐resolution mass spectrometry (HR‐MS) and various spectroscopic methods such as FT‐IR, 1H‐NMR, 13C‐NMR, APT, and 2D‐NMR (HETCOR, COSY, INADEQUATE).  相似文献   

14.
The title compound (systematic name: methyl 2‐{2‐[(tert‐butoxycarbonyl)amino]‐2‐methylpropanamido}‐2‐methylpropanoate), C14H26N2O5, (I), crystallizes in the monoclinic space group P21/n in two polymorphic forms, each with one molecule in the asymmetric unit. The molecular conformation is essentially the same in both polymorphs, with the α‐aminoisobutyric acid (Aib) residues adopting ϕ and ψ values characteristic of α‐helical and mixed 310‐ and α‐helical conformations. The helical handedness of the C‐terminal residue (Aib2) is opposite to that of the N‐terminal residue (Aib1). In contrast to (I), the closely related peptide Boc‐Aib‐Aib‐OBn (Boc is tert‐butoxycarbonyl and Bn is benzyl) adopts an αL‐PII backbone conformation (or the mirror image conformation). Compound (I) forms hydrogen‐bonded parallel β‐sheet‐like tapes, with the carbonyl groups of Aib1 and Aib2 acting as hydrogen‐bond acceptors. This seems to represent an unusual packing for a protected dipeptide containing at least one α,α‐disubstituted residue.  相似文献   

15.
In vivo metabolites of ketorolac (KTC) have been identified and characterized by using liquid chromatography positive ion electrospray ionization high resolution tandem mass spectrometry (LC/ESI‐HR‐MS/MS) in combination with online hydrogen/deuterium exchange (HDX) experiments. To identify in vivo metabolites, blood urine and feces samples were collected after oral administration of KTC to Sprague–Dawley rats. The samples were prepared using an optimized sample preparation approach involving protein precipitation and freeze liquid separation followed by solid‐phase extraction and then subjected to LC/HR‐MS/MS analysis. A total of 12 metabolites have been identified in urine samples including hydroxy and glucuronide metabolites, which are also observed in plasma samples. In feces, only O‐sulfate metabolite and unchanged KTC are observed. The structures of metabolites were elucidated using LC‐MS/MS and MSn experiments combined with accurate mass measurements. Online HDX experiments have been used to support the structural characterization of drug metabolites. The main phase I metabolites of KTC are hydroxylated and decarbonylated metabolites, which undergo subsequent phase II glucuronidation pathways. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
This paper describes an improved method for the sequence analysis of Arg‐containing glycopeptide by MALDI mass spectrometry (MS). The method uses amino group derivatization (4‐aza‐6‐(2,6‐dimethyl‐1‐piperidinyl)‐5‐oxohexanoic acid N‐succinimidyl ester) and removal (carboxypeptidase B) or modification (peptidylarginine deiminase 4) of the arginine residue of the peptide. The derivatization attaches a basic tertiary amine moiety onto the peptides, and the enzymatic treatment removes or modifies the arginine residue. Fragmentation of the resulting glycopeptide under low‐energy collision‐induced dissociation yielded a simplified ion series of both the glycan and the peptide that can facilitate their sequencing. The feasibility of the method was studied using α1‐acid glycoprotein‐derived N‐linked glycopeptides, and glycan and peptide in each glycopeptide were successfully sequenced by MALDI tandem MS (MS/MS). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Cells continuously produce reactive oxidative species that can modify all cellular components. In proteins, for example, cysteine, methionine, tryptophan (Trp), and tyrosine residues are particularly prone to oxidation. Here, we report two new approaches to distinguish two isomeric oxidation products of Trp residues, i.e. 5‐hydroxytryptophan (5‐HTP) and oxindolylalanine (Oia) residues, in peptides. First, 2‐nitrobenzenesulfenyl chloride, known to derivatize Trp residues in position 2 of the indole ring, was used to label 5‐HTP residues. The mass shift of 152.98 m/z units allowed identifying 5‐HTP‐ besides Trp‐containing peptides by mass spectrometry, whereas Oia residues were not labeled. Second, fragmentation of the Oia‐ and 5‐HTP‐derived immonium ions at m/z 175.08 produced ions characteristic for each residue that allowed their identification even in the presence of y1 ions at m/z 175.12 derived from peptides with C‐terminal arginine residues. The pseudo MS3 spectra acquired on a quadrupole time‐of‐flight hybrid mass spectrometer displayed two signals at m/z 130.05 and m/z 132.05 characteristic for Oia‐containing peptides and a group of six signals (m/z 103.04, 120.04, 130.04, 133.03, 146.04, and 148.04) for 5‐HTP‐cointaining peptides. In both cases, the relative signal intensities appeared to be independent of the sequence providing a specific fingerprint of each oxidative modification. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
MS/MS experiment and accurate mass measurement are powerful tools in metabolite identification. However, sometimes these data do not provide enough information to assign an unambiguous structure to a metabolite. In combination with MS techniques, hydrogen/deuterium (H/D) exchange can provide additional information for structural elucidation by determination of the number of exchangeable hydrogen atoms in a structure. In this study, the principal phase I metabolites of iso‐phenylcyclopentylamine in rat bile were identified by high‐performance liquid chromatography with electrospray ionization quadrupole time‐of‐flight mass spectrometry (ESI‐Q‐TOF‐MS). Since N‐oxidation may occur because of the existence of the primary amino group in the structure, it was difficult to differentiate the hydroxylated metabolites from N‐oxides by ESI‐Q‐TOF‐MS alone. Therefore, online H/D exchange technique was applied to solve this problem. Finally, 25 phase I metabolites were detected and structurally described, in which 11 were confirmed to be N‐oxides. This study demonstrated the effectiveness of high‐resolution mass spectrometry in combination with an online H/D exchange technique in rapid identification of drug metabolites, especially in discriminating hydroxylated metabolites from N‐oxides. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The title compound {systematic name: 4‐amino‐5‐cyclopropyl‐7‐(2‐deoxy‐β‐D‐erythro‐pentofuranosyl)‐7H‐pyrrolo[2,3‐d]pyrimidine}, C14H18N4O3, exhibits an anti glycosylic bond conformation, with the torsion angle χ = −108.7 (2)°. The furanose group shows a twisted C1′‐exo sugar pucker (S‐type), with P = 120.0 (2)° and τm = 40.4 (1)°. The orientation of the exocyclic C4′—C5′ bond is ‐ap (trans), with the torsion angle γ = −167.1 (2)°. The cyclopropyl substituent points away from the nucleobase (anti orientation). Within the three‐dimensional extended crystal structure, the individual molecules are stacked and arranged into layers, which are highly ordered and stabilized by hydrogen bonding. The O atom of the exocyclic 5′‐hydroxy group of the sugar residue acts as an acceptor, forming a bifurcated hydrogen bond to the amino groups of two different neighbouring molecules. By this means, four neighbouring molecules form a rhomboidal arrangement of two bifurcated hydrogen bonds involving two amino groups and two O5′ atoms of the sugar residues.  相似文献   

20.
The pyrylium group is a selective reagent for ε‐amino groups in proteins. In particular, for fluorescence labeling, a number of advantages over traditional N‐hydroxysuccinimidyl ester chemistry were recognized such as the rapid prestaining procedure. Here, we have investigated the labeling reaction for the fluorogenic pyrylium dye Py‐1 using liquid chromatography coupled to MS with the aim of determining its specificity and possible side products. Peptides containing no, one, and two lysine residue and a choice of no or one cysteine residue were labeled with Py‐1 at yields > 30%. Gas phase fragmentation proved both labeling of lysine residues as well as that of the N‐terminus also in peptides that contained a lysine residue. Evidence for cysteine labeling was not found, but several other products were detected such as the results of rearrangements with adjacent acidic amino acids. Apart from the use as a fluorogenic label, Py‐1 recommends itself for N‐terminal charge tagging as alternative to the commonly used quaternary ammonium salts. Predominantly a‐ and b‐type ion series were observed for N‐terminally labeled peptides. Further applications include chromophore tagging since the labeled product is not only fluorescent but also colored red.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号