首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microfluidics can be used to handle relatively small volumes of samples and to conduct reactions in microliter‐sized volumes. Electrospray ionization can couple microfluidics with mass spectrometry (MS) to monitor chemical reactions online. However, fabricating microfluidic chips is time‐consuming. We herein propose the use of a micro‐reactor that is sustained by two capillaries and an ultrasonicator. The inlets of the capillaries were individually immersed to two different sample vials that were subjected to the ultrasonicator. The tapered outlets of the two capillaries were placed cross with an angle of ~60° close to the inlet of the mass spectrometer to fuse the eluents. On the basis of capillary action and ultrasonication, the samples from the two capillaries can be continuously directed to the capillary outlets and fuse simultaneously to generate gas phase ions for MS analysis through ultrasonication‐assisted spray ionization (UASI). Any electric contact applied on the capillaries is not required. Nevertheless, UASI spray derived from the eluents can readily occur in front of the mass spectrometer. That is, a micro‐reactor was created from the fusing of the eluent containing different reactants from these two UASI capillaries, allowing reactions to be conducted in situ. The solvent in the fused droplets was evaporated quickly, and the product ions could be immediately observed by MS because of the extreme rise in the concentration of the reactants. For proof of concept, pyrazole synthesis reaction and cortisone derivatization by Girard T reagent were selected as the model reactions. The results demonstrated the feasibility of using UASI‐based micro‐reactor for online MS analysis to detect reaction intermediates and products.  相似文献   

2.
In this paper, we describe a novel technique—ultrasonication-assisted spray ionization (UASI)—for the generation of singly charged and multiply charged gas-phase ions of biomolecules (e.g., amino acids, peptides, and proteins) from solution; this method employs a low-frequency ultrasonicator (ca. 40 kHz) in place of the high electric field required for electrospray ionization. When a capillary inlet is immersed into a sample solution within a vial subjected to ultrasonication, the solution is continually directed to the capillary outlet as a result of ultrasonication-assisted capillary action; an ultrasonic spray of the sample solution is emitted at the outlet of the tapered capillary, leading to the ready generation of gas-phase ions. Using an ion trap mass spectrometer, we found that singly charged amino acid and multiply charged peptides/proteins ions were generated through this single-step operation, which is both straightforward and extremely simple to perform. The setup is uncomplicated: only a low-frequency ultrasonicator and a tapered capillary are required to perform UASI. The mass spectra of the multiply charged peptides and proteins obtained from sample solutions subjected to UASI resemble those observed in ESI mass spectra.  相似文献   

3.
Continuous flow infrared matrix‐assisted laser desorption electrospray ionization (CF IR MALDESI) mass spectrometry was demonstrated for the on‐line analysis of liquid samples. Samples in aqueous solution were flowed through a 50 µm i.d. fused‐silica capillary at a flow rate of 1–6 µL/min. As analyte aqueous solution flowed through the capillary, a liquid sample bead formed at the capillary tip. A pulsed infrared optical parametric oscillator (OPO) laser with wavelength of 2.94 µm and a 20 Hz repetition rate was focused onto the capillary tip for sample desorption and ablation. The plume of ejected sample was entrained in an electrospray to form ions by MALDESI. The resulting ions were sampled into an ion trap mass spectrometer for analysis. Using CF IR MALDESI, several chemical and biochemical reactions were monitored on‐line: the chelation of 1,10‐phenanthroline with iron(II), insulin denaturation with 1,4‐dithiothreitol, and tryptic digestion of cytochrome c. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A straightforward on-line monitoring of organic reactions by ultrasonication-assisted spray ionization mass spectrometry (UASI MS) is demonstrated in this work.  相似文献   

5.
Proanthocyanidins were separated for the first time from Cinnamomum longepaniculatum leaves. An experiment‐based extraction strategy was used to research the efficiency of an ultrasound‐assisted method for proanthocyanidins extraction. The Plackett–Burman design results revealed that the ultrasonication time, ultrasonic power and liquid/solid ratio were the most significant parameters among the six variables in the extraction process. Upon further optimization of the Box–Behnken design, the optimal conditions were obtained as follows: extraction temperature, 100°C; ethanol concentration, 70%; pH 5; ultrasonication power, 660 W; ultrasonication time, 44 min; liquid/solid ratio, 20 mL/g. Under the obtained conditions, the extraction yield of the proanthocyanidins using the ultrasonic‐assisted method was 7.88 ± 0.21 mg/g, which is higher than that obtained using traditional methods. The phloroglucinolysis products of the proanthocyanidins, including the terminal units and derivatives from the extension units, were tentatively identified using a liquid chromatography with tandem mass spectrometry analysis. Cinnamomum longepaniculatum proanthocyanidins have promising antioxidant and anti‐nutritional properties. In summary, an ultrasound‐assisted method in combination with a response surface experimental design is an efficient methodology for the sufficient isolation of proanthocyanidins from Cinnamomum longepaniculatum leaves, and this method could be used for the separation of other bioactive compounds.  相似文献   

6.
Tandem mass spectrometry (MS/MS) is powerful for chemical identification but it is still insufficient for explicit ion structure determination. A strategy is introduced to elucidate MS fragment ion structures using NMR spectroscopy for the first time. In our experiments, precursor ions are dissociated at atmospheric pressure and the resulting fragment ions are identified by mass spectrometry but collected outside the mass spectrometer, making the subsequent NMR measurements possible. This new strategy has been applied to determine the chemical structure of the characteristic b2 fragment ion, a subject of longstanding debate in MS‐based proteomics.  相似文献   

7.
Reactive intermediates play key roles for reaction mechanism elucidation. A suitable tool for identifying the key intermediates is crucial and highly desirable. In this study, surface desorption dielectric‐barrier discharge ionization (reactive SDDBDI) was developed for characterization of the reactive intermediates. In reactive SDDBDI, the plasma is doped with a reagent before the plasma ions are directed at a cover slip surface bearing another analyte. Different from SDDBDI, reactive SDDBDI can be used both as an ambient ionization source and as a means to produce reagent ions for ambient ion/molecule reactions. The online derivation of 4‐aminophenol with trifluoroacetic anhydride demonstrated that reactive SDDBDI can be used for chemical analysis where improved specificity or sensitivity is required. The utility of this approach for real‐time detection of reactive intermediate was demonstrated by the Schiff‐base and Eberlin reactions. The formed intermediates and products could be readily detected and identified by tandem mass spectrometry. These results indicate that reactive SDDBDI can be used to generate reagent ions that undergo ion/molecule reactions in the open air with an analyte at condensed phase on a surface. Reactive SDDBDI has high‐efficiency ion transmission and high MS sensitivity. It is thus a potential tool to perform ambient ion/molecule reactions and detect reactive intermediates.  相似文献   

8.
Poly(2‐ethyl‐2‐oxazoline), a synthetic polymer was analysed by mass spectrometry using different ion sources. Two distributions could be identified in the mass spectra which related to two different polymer series (one with hydrogen and hydroxyl end‐groups and the other with methyl and hydroxyl end‐groups). The fragmentation behaviour of the protonated oligomers was studied in a quadrupole time‐of‐flight mass spectrometer (MS) with electrospray, atmospheric pressure chemical ionization and direct analysis in real time soft ionization techniques. Three product ion series were identified in the MS/MS spectra independently of the ion source used. Based on the results, a mechanism was proposed for the dissociation by means of the accurate mass of the product ions, pseudo MS3 experiments and the energy dependence of the product ion intensity, i.e. breakdown curves. The survival yield method was used to highlight the correlation between the size of the oligomers and the laboratory frame collision energy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
WANG  Xiufang  TIAN  Yong  ZHONG  Guoying  CHEN  Guanke 《中国化学》2009,27(10):2090-2092
Dynorphin A (1–13) was chemically modified by reaction with succinimidyl propionate‐monomethoxy polyethylene glycol (mPEG‐SPA). To determine the degree and the optimized condition for PEGylation of dynorphin A, the reactions were monitored in different pH buffers at different molar ratios by reversed‐phase high performance liquid chromatography (RP‐HPLC) and matrix‐assisted laser desorption/ionization time‐of‐?ight mass spectrometry (MALDI‐TOF MS). The results showed that the degree of PEGylation for dynorphin A could easily be controlled through adjustment of the molar ratios and the pH. The degree of PEGylation of dynorphin A increased as the molar ratio of dynorphin to MPEG‐SPA and the pH increased.  相似文献   

10.
Recently discovered ionization methods for use in mass spectrometry (MS), are widely applicable to biological materials, robust, and easy to automate. Among these, matrix assisted ionization vacuum (MAIV) is astonishing in that ionization of low and high-mass compounds are converted to gas-phase ions with charge states similar to electrospray ionization simply by exposing a matrix:analyte mixture to the vacuum of a mass spectrometer. Using the matrix compound, 3-nitrobenzonitrile, abundant ions are produced at room temperature without the need of high voltage or a laser. Here we discuss chemical analyses advances using MAIV combined with ion mobility spectrometry (IMS) real time separation, high resolution MS, and mass selected and non-mass selected MS/MS providing rapid analyte characterization. Drugs, their metabolites, lipids, peptides, and proteins can be ionized simultaneously from a variety of different biological matrixes such as urine, plasma, whole blood, and tissue. These complex mixtures are best characterized using a separation step, which is obtained nearly instantaneously with IMS, and together with direct ionization and MS or MS/MS provides a fast analysis method that has considerable potential for non-targeted clinical analyses.  相似文献   

11.
Identification of dyes in historic textiles was until recently only based on reversed phase liquid chromatography and diode-array detection (RPLC–DAD). Although in the last years mass spectrometry (MS) is increasingly used as a detection system for liquid chromatography, most applications in the field are directed to identification of the molecular ions or in studies dedicated to degradation products which may be used as markers in RPLC–DAD. In the present work, an analytical protocol for the identification of dyes using RPLC/ESI/MS is presented. Atmospheric pressure electrospray ionization (ESI) was applied, in the negative ion monitoring mode. Both single stage and tandem MS (MS/MS) approaches were considered. An ion trap was used as mass analyzer. Experiments are based on the characterization of standards (natural dyes and/or dyed fibers) with the mass spectrometer sequentially working in the following modes: single MS/full scan, followed by plotting chromatograms through ion extraction (IEC) according to mass/charge ratios corresponding to molecular ions; single MS/selected ion monitoring (SIM) mode; tandem MS/single reaction monitoring (SRM) mode; tandem MS/multiple reactions monitoring (MRM) or product ion scanning modes. A faster chromatographic separation could be applied as MS detection readily balanced the selectivity of the analytical process. In a case study, 11 dyes from 3 biological sources were detected in a 0.5 mg historic sample.  相似文献   

12.
In this work a new mass spectrometry based method for monitoring the kinetics of chemical reactions in solution is described. A stopped-flow mixing instrument is coupled to an electrospray ionization (ESI) mass spectrometer via a novel type of interface. Chemical reactions are initiated by rapid mixing of two reactant solutions. The mixture is instantaneously transferred to a reaction tube where the kinetics can be monitored in real-time by ESI mass spectrometry. With the current setup, a time window from 2.5 to 36 seconds after mixing of the reactants can be monitored. The experimental setup is used to study the kinetics of acetylcholine hydrolysis under alkaline conditions as a function of pH. The intensities of reactant (acetylcholine) and product (choline) ions are monitored simultaneously as a function of time. The reaction is carried out under pseudo-first-order conditions and the intensity-time curves are well described by single exponentials. The rate constants determined from these fits compare favorably with previous data from the literature.  相似文献   

13.
The unimolecular dissociation reactions of doubly charged ions were reported,which resulted from a tandem mass spectrometer and a reversed geometry double focusing mass spectrometer by electron impact.Mass analyzed ion kinetic energy spectrometry(MIKES) was used to obtain the kinetic energy releases in charge separation reactions of doubly charged ions.The intercharge distances between the two charges at transition states can be calculated from the kinetic energy releases.Transition structures of unimolecular dissociation reactions were infered from MIKES and MS/MS.  相似文献   

14.
双电荷离子[C_(12)H_(12)N_2O]~(2+)和[C_(12)H_(12)N_2S]~(2+)的气相单分子分解反应研究任达,贾维平,李智立,刘淑莹(中国科学院长春应用化学研究所,长春,130022)关键词双电荷离子,质量分析离子动能谱,串联质谱,4...  相似文献   

15.
Reaction monitoring using inductive ESI mass spectrometry allows chemical reactions to be tracked in real time, including air‐ and moisture‐sensitive as well as heterogeneous reactions. Highly concentrated solutions can also be monitored for long periods without emitter clogging. Sheath gas assists in nebulization and a sample splitter reduces the delay time and minimizes contamination of the instrument. Short‐lived intermediates (ca. 5 s) were observed in Pd/C‐catalyzed hydrogenolysis, and several intermediates were seen in Negishi cross‐coupling reactions.  相似文献   

16.
Reaction monitoring using inductive ESI mass spectrometry allows chemical reactions to be tracked in real time, including air‐ and moisture‐sensitive as well as heterogeneous reactions. Highly concentrated solutions can also be monitored for long periods without emitter clogging. Sheath gas assists in nebulization and a sample splitter reduces the delay time and minimizes contamination of the instrument. Short‐lived intermediates (ca. 5 s) were observed in Pd/C‐catalyzed hydrogenolysis, and several intermediates were seen in Negishi cross‐coupling reactions.  相似文献   

17.
A comprehensive study on the efficient one‐pot synthesis of polyhedral octaphenylsilsesquioxane (OPS) is reported via the hydrolytic condensation of phenyltrimethoxysilane (PTMS) in the presence of basic catalyst to investigate the specific synthesis mechanism. The synthetic reactions are monitored with real time infrared (RTIR) spectroscopy. Then RTIR coupled with 29Si nuclear magnetic resonance spectroscopy (NMR) and matrix‐assisted laser desorption/ionization time of flight mass spectrometry (MALDI‐TOF‐MS) are used to monitor the reactions and identify the intermediary species during the reaction. The rapid hydrolysis of PTMS is detected by RTIR. Contrary to previous reports, the ladder‐like structured species are identified as intermediates during the reaction process. It is suggested that formation of caged T8 OPS is realized through the chain break and rearrangement of the ladder‐like phenyltrimethoxysilanes. Accordingly, a scheme from hydrolysis of the PTMS to formation of the OPS is provided.  相似文献   

18.
The non‐stick properties of parchment papers are achieved by polydimethylsiloxane (PDMS) coatings. During baking, PDMS can thus be extracted from the silicone‐coated parchment into the baked goods. Positive‐ion direct analysis in real time (DART) mass spectrometry (MS) is highly efficient for the analysis of PDMS. A DART‐SVP source was coupled to a quadrupole‐time‐of‐flight mass spectrometer to detect PDMS on the contact surface of baked goods after use of silicone‐coated parchment papers. DART spectra from the bottom surface of baked cookies and pizzas exhibited signals because of PDMS ions of the general formula [(C2H6SiO)n + NH4]+ in the m/z 800–1900 range. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The interaction between metals and naturally occurring humic substances and the thereby induced issues of bioavailability and hydrogeochemical turnover of metal ions in natural waters have been the subject of intense study for decades. Traditional bulk techniques to investigate metal‐humic binding (e.g. potentiometry and inductively coupled plasma mass spectrometry (ICP‐MS)) can provide quantitative results for the relative abundance and distribution of metal species in humic samples and/or overall binding constants. The shortcoming of these bulk techniques is the absence of structural detail. Ultra‐high‐resolution mass spectrometry, currently the only technique demonstrated to resolve individual humic ions, is not generally employed to provide the missing qualitative information primarily because the identification of metal complexes within the already complex mixtures of humic substances is non‐trivial and time‐consuming to the extent of eliminating any possibility for real‐time manipulation of chelated analytes. Here, it is demonstrated that with tailored selection of the metal ion, it is possible to visually identify large numbers of metal‐humic complexes (~500 for Be2+, ~1100 for Mn2+, and ~1500 for Cr3+) in real‐time as the spectra are being acquired. Metal ions are chosen so that they form primarily even‐m/z complexes with humic ions. These even‐m/z complexes stand out in the spectrum and can readily be characterized based on molecular formulae, which here revealed for example that Suwannee River fulvic acid (SRFA) complexes encompassed primarily highly oxygenated fulvic acids of relatively low double‐bond equivalence. Facile, real‐time identification of even‐m/z metal‐humic complexes additionally allows for the specific selection of metal‐humic complexes for MSn analysis and in‐trap ion‐neutral reactions enabling investigation of metal‐humic complex structure. MS/MS data were collected to demonstrate the potential of the technique as well as highlight some of the remaining challenges. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Anabolic steroids are structurally similar compounds, and their product-ion spectra obtained by tandem mass spectrometry under electrospray ionization conditions are quite difficult to interpret because of poly-ring structures and lack of a charge-retaining center in their chemical structures. In the present study, the fragmentation of nine anabolic steroids of interest to the racing industry was investigated by using triple quadrupole mass spectrometer, Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer, and a linear ion trap instrument. With the aid of an expert system software (Mass Frontier version 3.0), accurate mass measurements, and multiple stage tandem mass spectrometric (MS(n)) experiments, fragmentation pathways were elucidated for boldenone, methandrostenolone, tetrahydrogestrinone (THG), trenbolone, normethandrolone and mibolerone. Small differences in the chemical structures of the steroids, such as an additional double-bond or a methyl group, result in significantly different fragmentation pathways. The fragmentation pathways proposed in this paper allow interpretation of major product ions of other anabolic steroids reported by other researchers in a recent publication. The proposed fragmentation pathways are helpful for characterization of new steroids. The approach used in this study for elucidation of the fragmentation pathways is helpful in interpretation of complicated product-ion spectra of other compounds, drugs and their metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号