首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.
In‐source collision‐induced dissociation (CID) is commonly used with single‐stage high‐resolution mass spectrometers to gather both a molecular formula and structural information through the collisional activation of analytes with residual background gas in the source region of the mass spectrometer. However, unlike tandem mass spectrometry, in‐source CID does not involve an isolation step prior to collisional activation leading to a product ion spectrum composed of fragment ions from any analyte present during the activation event. This work provides the first comparison of in‐source CID and beam‐type CID spectra of emerging synthetic drugs on the same instrument to understand the fragmentation differences between the two techniques and to contribute to the scientific foundations of in‐source CID. Electrospray ionization–quadrupole time‐of‐flight (ESI‐Q‐TOF) mass spectrometry was used to generate product ion spectra from in‐source CID and beam‐type CID for a series of well‐characterized fentanyl analogs and synthetic cathinones. A comparison between the fragmentation patterns and relative ion abundances for each technique was performed over a range of fragmentor offset voltages for in‐source CID and a range of collision energies for beam‐type CID. The results indicate that large fragmentor potentials for in‐source CID tend to favor higher energy fragmentation pathways that result in both kinetically favored pathways and consecutive neutral losses, both of which produce more abundant lower mass product ions relative to beam‐type CID. Although conditions can be found in which in‐source CID and beam‐type CID provide similar overall spectra, the in‐source CID spectra tend to contain elevated noise and additional chemical background peaks relative to beam‐type CID.  相似文献   

2.
Ruthenium‐ion‐catalyzed oxidation of a range of alkylated polyaromatics has been studied. 2‐Ethylnaphthalene was used as a model substrate, and oxidation can be performed in either a conventional biphasic or in a monophasic solvent system. In either case the reaction rates and product selectivity are identical. The reaction products indicate that the aromatic ring system is oxidized in preference to the alkyl chain. This analysis is possible due to the development of a quantitative NMR protocol to determine the relative amounts of aliphatic and aromatic protons. From a systematic set of substrates we show that as the length of the alkyl chain substituent on a polyaromatic increases, the proportion of products in which the chain remains attached to the aromatic system increases. Larger polyaromatic systems, based on pyrene and phenanthrene, show greater reactivity than those with fewer aromatic rings, and the alkyl chains are more stable to oxidation.  相似文献   

3.
Comprehensive two‐dimensional gas chromatography (GC × GC) coupled to time‐of‐flight mass spectrometry is a powerful separation tool for complex petroleum product analysis. However, the most commonly used electron ionization (EI) technique often makes the identification of the majority of hydrocarbons impossible due to the exhaustive fragmentation and lack of molecular ion preservation, prompting the need of soft‐ionization energies. In this study, three different soft‐ionization techniques including photo ionization (PI), chemical ionization (CI), and field ionization (FI) were compared against EI to elucidate their relative capabilities to reveal different base oil hydrocarbon classes. Compared with EI (70 eV), PI (10.8 eV) retained significant molecular ion (M) information for a large number of isomeric species including branched‐alkanes and saturated monocyclic hydrocarbons along with unique fragmentation patterns. However, for bicyclic/polycyclic naphthenic and aromatic compounds, EI played upper hand by retaining molecular as well as fragment ions to identify the species, whereas PI exhibited mainly molecular ion signals. On the other hand, CI revealed selectivity towards different base oil groups, particularly for steranes, sulfur‐containing thiophenes, and esters, yielding protonated molecular ions (M + H)+ for unsaturated and hydride abstracted ions (M‐H+) for saturated hydrocarbons. FI, as expected, generated intact molecular ions (M) irrespective to the base oil chemical classes. It allowed elemental composition by TOFMS with a mass resolving power up to 8000 (FWHM) and a mass accuracy of 1 mDa, leading to the calculation of heteroatomic content, double bond equivalency, and carbon number of the compounds. The qualitative and quantitative results presented herein offer a unique perspective into the detailed comparison of different ionization techniques corresponding to several hydrocarbon classes.  相似文献   

4.
Collision induced dissociation (CID) has been extensively used for structure elucidation. CID in the electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) modes has been found to generate mostly even‐electron fragment ions while it has been occasionally reported to form odd‐electron free radical ions. However, the structural requirements and the fragmentation mechanisms for free‐radical CIDs have not been well characterized in the literature. For this purpose, we studied a series of aromatic and non‐aromatic compounds such as sulfonamides, N‐aryl amides, tert‐butyl‐substituted aromatic compounds, aryl alkyl ethers, and O‐alkyl aryl oximes using the LTQ? and LTQ Orbitrap? linear ion trap mass spectrometers. The accurate measurement of the fragment ion masses established the unambiguous assignment of the fragment structures resulting from the test compounds. Our results showed that free radical fragmentation is structure dependent and is to a large extent correlated with the neighboring groups in the structures that stabilize the newly formed free radical ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Poly(2‐ethyl‐2‐oxazoline), a synthetic polymer was analysed by mass spectrometry using different ion sources. Two distributions could be identified in the mass spectra which related to two different polymer series (one with hydrogen and hydroxyl end‐groups and the other with methyl and hydroxyl end‐groups). The fragmentation behaviour of the protonated oligomers was studied in a quadrupole time‐of‐flight mass spectrometer (MS) with electrospray, atmospheric pressure chemical ionization and direct analysis in real time soft ionization techniques. Three product ion series were identified in the MS/MS spectra independently of the ion source used. Based on the results, a mechanism was proposed for the dissociation by means of the accurate mass of the product ions, pseudo MS3 experiments and the energy dependence of the product ion intensity, i.e. breakdown curves. The survival yield method was used to highlight the correlation between the size of the oligomers and the laboratory frame collision energy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The spontaneous reaction of unsaturated double bonds induced by the fragmentation of ether bonds is presented as a method to obtain a crosslinked polymer material. Poly(1,5‐dioxepan‐2‐one) (PDXO) was synthesized using three different polymerization techniques to investigate the influence of the synthesis conditions on the ether bond fragmentation. It was found that thermal fragmentation of the ether bonds in the polymer main chain occurred when the synthesis temperature was 140 °C or higher. The double bonds produced reacted spontaneously to form crosslinks between the polymer chains. The formation of a network structure was confirmed by Fourier transform infrared spectrometry and differential scanning calorimetry. In addition, the low molar mass species released during hydrolysis of the DXO polymers were monitored by ESI‐MS and MALDI‐TOF‐MS. Ether bond fragmentation also occurred during the ionization in the electrospray instrument, but predominantly in the lower mass region. No fragmentation took place during MALDI ionization, but it was possible to detect water‐soluble DXO oligomers with a molar mass up to approximately 5000 g/mol. The results show that ether bond fragmentation can be used to form a network structure of PDXO. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7258–7267, 2008  相似文献   

7.
Desorption atmospheric pressure photoionization‐mass spectrometry (DAPPI‐MS) is a versatile surface analysis technique for a wide range of analytes, especially for neutral and non‐polar analytes. Here, a set of analytes typically found in environmental or food samples was analyzed by DAPPI‐MS. The set included five polyaromatic hydrocarbons (PAHs), one N‐PAH, one brominated flame retardant, and nine pesticides, which were studied with three different spray solvents: acetone and toluene in positive ion mode, and anisole in negative ion mode. The analytes showed [M + H]+, M+?, and [M–H]? ions as well as fragmentation and substitution products. Detection limits for the studied compounds ranged from 30 pg to 1 ng (from 0.14 to 5.6 pmol). To demonstrate the feasibility of the use of DAPPI‐MS two authentic samples – a circuit board and orange peel – and a spiked soil sample were analyzed. Tetrabromobisphenol A, imazalil, and PAHs were observed from the three above‐mentioned samples, respectively. The method is best suited for rapid screening analysis of environmental or food samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Amide‐sulfonamides provide a potent anti‐inflammatory scaffold targeting the CXCR4 receptor. A series of novel amide‐sulfonamide derivatives were investigated for their gas‐phase fragmentation behaviors using electrospray ionization ion trap mass spectrometry and quadrupole time‐of‐flight mass spectrometry in negative ion mode. Upon collision‐induced dissociation (CID), deprotonated amide‐sulfonamides mainly underwent either an elimination of the amine to form the sulfonyl anion and amide anion or a benzoylamide derivative to provide sulfonamide anion bearing respective substituent groups. Based on the characteristic fragment ions and the deuterium–hydrogen exchange experiments, three possible fragmentation mechanisms corresponding to ion‐neutral complexes including [sulfonyl anion/amine] complex ( INC‐1 ), [sulfonamide anion/benzoylamide derivative] complex ( INC‐2 ) and [amide anion/sulfonamide] complex ( INC‐3 ), respectively, were proposed. These three ion‐neutral complexes might be produced by the cleavages of S–N and C–N bond from the amide‐sulfonamides, which generated the sulfonyl anion (Route 1), sulfonamide anion (Route 2) and the amide anion (Route 3). DFT calculations suggested that Route 1, which generated the sulfonyl anion (ion c ) is more favorable. In addition, the elimination of SO2 through a three‐membered‐ring transition state followed by the formation of C–N was observed for all the amide‐sulfonamides.  相似文献   

9.
Difference X‐ray photoelectron spectroscopy (D‐XPS) revealed the surface oxidation process of a diamond‐like carbon (DLC) film. Evaluation of surface functional groups on DLC solely by the C 1s spectrum is difficult because the spectrum is broad and has a secondary asymmetric lineshape. D‐XPS clarified the subtle but critical changes at the DLC surface caused by wet oxidation. The hydroxyl (C―OH) group was dominant at the oxidized surface. Further oxidized carbonyl (C?O) and carboxyl (including carboxylate) (COO) groups were also obtained; however, the oxidation of C?O to COO was suppressed to some extent because the reaction required C―C bond cleavage. Wet oxidation cleaved the aliphatic hydrogenated and non‐hydrogenated sp2 carbon bonds (C―H sp2 and C―C sp2) to create a pair of C―OH and hydrogenated sp3 carbon (C―H sp3) bonds. The reaction yield for C―H sp2 was superior at the surface, suggesting that the DLC film was hydrogen rich at the surface. Oxidation of aromatic sp2 rings or polycyclic aromatic hydrocarbons such as nanographite to phenols did not occur because of their resonance stabilization with electron delocalization. Non‐hydrogenated sp3 carbon (C―C sp3) bonds were not affected by oxidation, suggesting that these bonds are chemically inert. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Sorafenib is an orally active multikinase inhibitor for the treatment of renal cell carcinoma. A series of sorafenib structural analogues were investigated in this work for their gas‐phase fragmentation behaviors using electrospray ionization ion trap mass spectrometry and quadrupole time‐of‐flight mass spectrometry in the positive mode. The possible fragmentation pathways were proposed based on ESI‐MS/MS data and theoretical calculation. Different from the typical α‐cleavage of amide, consecutive reactions that involved elimination of H2O and CH3NC were observed for 2‐pyridinecarboxamide derivatives, which were followed by the formation of a stabilized 7‐membered ring carbocation by loss of CO. Two possible protonation sites occurred at carbonyl oxygen atoms for aryl‐urea derivatives and the α‐cleavage of urea was the main fragmentation pathways, which was followed by the formation of stable benzo [d] oxazole ring characteristic to aryl‐urea derivatives. The relative abundance of characteristic fragment ions and the energy‐resolved breakdown curves were used to distinguish the 4 sets of positional isomers of sorafenib and analogues. The methodology and results of the present work would contribute to the chemical structure identification of other structural analogues and the potential impurities presented in active pharmaceutical ingredients and drug formulations.  相似文献   

11.
Ultraviolet photodissociation (UVPD) was evaluated as a technique for generating ion fragmentation information that is alternative and/or complementary to the information obtained by collision‐induced dissociation (CID). Ions trapped in a pressurized linear ion trap were dissociated using a 355 nm or a 266 nm pulsed laser. Comparisons of UVPD and CID spectra using a set of aromatic chromophore‐containing compounds (desmethyl bosentan, haloperidol, nelfinavir) demonstrated distinct characteristic fragmentation patterns resulting from photodissociation. The wavelength of light and the pressure of the buffer gas in the UVPD cell are important parameters that control fragmentation pathways. The wavelength effect is related to the absorption cross section, location of the chromophore and the energy carried by one photon. Thus, UV irradiation wavelength affects fragmentation pathways as well as the fragmentation rate. The pressure effect can be explained by collisional quenching of ‘slow’ fragmentation pathways. We observed that higher pressure of the buffer gas during UVPD experiments highlights unique fragment ions by suppressing slow fragmentation pathways responsible for CID‐like fragmentation patterns. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
This work presents a strategy for elucidation of unknown migrants from plastic food contact materials (baby bottles) using a combination of analytical techniques in an untargeted approach. First, gas chromatography (GC) coupled to mass spectrometry (MS) in electron ionisation mode was used to identify migrants through spectral library matching. When no acceptable match was obtained, a second analysis by GC‐(electron ionisation) high resolution mass spectrometry time of flight (TOF) was applied to obtain accurate mass fragmentation spectra and isotopic patterns. Databases were then searched to find a possible elemental composition for the unknown compounds. Finally, a GC hybrid quadrupole‐TOF‐MS with an atmospheric pressure chemical ionisation source was used to obtain the molecular ion or the protonated molecule. Accurate mass data also provided additional information on the fragmentation behaviour as two acquisition functions with different collision energies were available (MSE approach). In the low‐energy function, limited fragmentation took place, whereas for the high‐energy function, fragmentation was enhanced. For less volatile unknowns, ultra‐high pressure liquid chromatography‐quadrupole‐TOF‐MS was additionally applied. Using a home‐made database containing common migrating compounds and plastic additives, tentative identification was made for several positive findings based on accurate mass of the (de)protonated molecule, product ion fragments and characteristic isotopic ions. Six illustrative examples are shown to demonstrate the modus operandi and the difficulties encountered during identification. The combination of these techniques was proven to be a powerful tool for the elucidation of unknown migrating compounds from plastic baby bottles. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A simple and effective solid phase extraction (SPE) method using silica gel micro glass columns has been developed for the separation of diesel fuel into groups of aliphatic, and mono-, di- and polyaromatic hydrocarbons. It is based on a stepwise gradient of dichloromethane in n-pentane. The resulting fractions were analyzed by capillary gas chromatography with a flame ionization detector and coupled gas chromatography-mass spectrometry. Commercially available standards, and retention indices and mass spectra were used for identification of individual aromatic compounds. The principal polycyclic aromatic hydrocarbons (PAHs) in diesel fuel are naphthalene, biphenyl, fluorene, phen-anthrene and their alkylated derivatives. Sulfur-containing PAHs are mainly represented by methyl-substituted dibenzo-thiophenes.  相似文献   

14.
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are widespread environmental pollutants that are generated by incomplete combustion and by atmospheric transformation of polycyclic aromatic hydrocarbons (PAHs). Many nitro-PAH compounds are potent genotoxins and some are direct acting mutagens. Detection of nitro-PAHs in aerosols is complicated by small sample sizes and nitro-PAH abundances that are 1–2 orders of magnitude less than analogous unsubstituted PAHs. Selective detection of several nitro-PAHs by using laser desorption ionization time-of-flight mass spectrometry in negative ion mode has been achieved. Desorption and ionization of nitro-PAHs were effected by using pulsed UV radiation at 266 and 213 ran. Intense molecular anions were observed in addition to fragments identified as CN? and NO 2 ? , which were characteristic indicators of the presence of nitro-PAHs. Selective detection of nitro-PAHs in negative ion mode was demonstrated in the analysis of a diesel particulate sample.  相似文献   

15.
Orthogonal acceleration time‐of‐flight (oa‐TOF) mass spectrometry (MS) was coupled to gas chromatography (GC) to measure ion yields (ratio of ion counts to number of neutrals entering the ion source) and signal‐to‐noise (S/N) in the electron ionization (EI) mode (hard ionization) as well as in the soft ionization modes of chemical ionization (CI), electron capture negative ion chemical ionization (NICI) and field ionization (FI). Mass accuracies of the EI and FI modes were also investigated. Sixteen structurally diverse volatile organic compounds were chosen for this study. The oa‐TOF mass analyzer is highly suited for FI MS and provided an opportunity to compare the sensitivity of this ionization method to the more conventional ionization methods. Compared to the widely used quadrupole mass filter, the oa‐TOF platform offers significantly greater mass accuracy and therefore the possibility of determining the empirical formula of analytes. The findings of this study showed that, for the instrument used, EI generated the most ions with the exception of compounds able to form negative ions readily. Lower ion yields in the FI mode were generally observed but the chromatograms displayed greater S/N and in many cases gave spectra dominated by a molecular ion. Ion counts in CI are limited by the very small apertures required to maintain sufficiently high pressures in the ionization chamber. Mass accuracy for molecular and fragment ions was attainable at close to manufacturer's specifications, thus providing useful information on molecular ions and neutral losses. The data presented also suggests a potentially useful instrumental combination would result if EI and FI spectra could be collected simultaneously or in alternate scans during GC/MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A novel ion/molecule reaction was observed to occur under electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photo ionization (APPI) conditions, leading to dimerization of ionized 4‐(methyl mercapto)‐phenol followed by fast H· loss. The reaction is particularly favored during ESI, which suggests that this ion/molecule reaction can occur both in the solution inside the ESI‐charged droplets and in the gas‐phase environment of most other atmospheric pressure ionization techniques. The dimerization reaction is inherent to the electrolytic process during ESI, whereas it is more by ion/molecule chemistry in nature during APCI and APPI. From the tandem mass spectrometry (MS/MS) data, accurate mass measurements, hydrogen/deuterium (H/D) exchange experiments and density functional theory (DFT) calculations, two methyl sulfonium ions appear to be the most likely products of this electrophilic aromatic substitution reaction. The possible occurrence of this unexpected reaction complicates mass spectral data interpretation and can be misleading in terms of structural assignment as reported herein for 4‐(methyl mercapto)‐phenol. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Electrospray ionization (ESI) is the most common ionization method in atmospheric pressure ionization mass spectrometry because of its easy use and handling and because a diverse range of components can be effectively ionized from high to medium polarity. Usually, ESI is not employed for the analysis of non‐polar hydrocarbons, but under some circumstances, they are effectively ionized. Polyaromatic hydrocarbons and aromatic heterocycles can form radical ions and protonated molecules after ESI, which were detected by Fourier transform ion cyclotron resonance mass spectrometry. The highly condensed aromatic structures are obtained from a heavy crude oil, and the results show class distribution from pure hydrocarbons up to more non‐basic nitrogen‐containing species. By using different solvent compositions [toluene/methanol (50/50 v/v), dichloromethane/methanol (50/50 v/v), dichloromethane/acetonitrile (50/50 v/v) and chloroform], the results show that the lack of proton donor agent helps to preserve the radical formation that was created at the metal/solution interface inside the electrospray capillary. The results demonstrate that with an appropriate selection of solvent and capillary voltage, the ratio between the detected radical ion and protonated molecule form can be manipulated. Therefore, ESI can be expanded for the investigation of asphaltene and other polyaromatic systems beyond the polar constituents as non‐polar hydrocarbons can be efficiently analyzed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A complete library of poly(2‐oxazoline) block copolymers was synthesized via cationic ring opening polymerization for the characterization by two different soft ionization techniques, namely matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) and electrospray ionization quadrupole time‐of‐flight mass spectrometry (ESI‐Q‐TOF MS). In addition, a detailed characterization was performed by tandem MS to gain more structural information about the block copolymer composition and its fragmentation behavior. The fragmentation of the poly(2‐oxazoline) block copolymers revealed the desired polymer structure and possible side reactions, which could be explained by different mechanisms, like 1,4‐ethylene or hydrogen elimination and the McLafferty +1 rearrangement. Polymers with aryl side groups showed less fragmentation due to their higher stability compared to polymers with alkyl side groups. These insights represent a further step toward the construction of a library with fragments and their fragmentation pathways for synthetic polymers, following the successful examples in proteomics. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
Gas‐phase C―C coupling reactions mediated by Ni (II) complexes were studied using a linear quadrupole ion trap mass spectrometer. Ternary nickel cationic carboxylate complexes, [(phen)Ni (OOCR1)]+ (where phen = 1,10‐phenanthroline), were formed by electrospray ionization. Upon collision‐induced dissociation (CID), they extrude CO2 forming the organometallic cation [(phen)Ni(R1)]+, which undergoes gas‐phase ion‐molecule reactions (IMR) with acetate esters CH3COOR2 to yield the acetate complex [(phen)Ni (OOCCH3)]+ and a C―C coupling product R1‐R2. These Ni(II)/phenanthroline‐mediated coupling reactions can be performed with a variety of carbon substituents R1 and R2 (sp3, sp2, or aromatic), some of them functionalized. Reaction rates do not seem to be strongly dependent on the nature of the substituents, as sp3sp3 or sp2sp2 coupling reactions proceed rapidly. Experimental results are supported by density functional theory calculations, which provide insights into the energetics associated with the C―C bond coupling step.  相似文献   

20.
Triacetone triperoxide (TATP), which is used as an explosive in acts of terrorism, was measured by means of gas chromatography/multiphoton ionization/time‐of‐flight mass spectrometry using a deep‐ultraviolet (deep‐UV) femtosecond laser as an ionization source. The fragmentation process was investigated by changing the intensity of the laser at the center axis of a molecular beam. A molecular ion was observed using a femtosecond laser, and the ratio of the intensities of the molecular and fragment ions decreased as the intensity of the laser increased. These results suggest that TATP can be efficiently ionized using a deep‐UV, ultrashort optical pulse. Furthermore, fragmentation was accelerated by excess energy supplied through higher‐order multiphoton processes under a strong radiation field. The detection limits obtained using the molecular ion and two dominant fragment ions, C2H3O+ and CH, were determined to be 670, 83 and 150 pg, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号