共查询到20条相似文献,搜索用时 15 毫秒
1.
Electronic,bonding, and optical properties of 1d [CuCN]n (n = 1–10) chains, 2d [CuCN]n (n = 2–10) nanorings,and 3d [Cun(CN)n]m (n = 4, m = 2, 3; n = 10, m = 2) tubes studied by DFT/TD‐DFT methods
下载免费PDF全文

Athanassios C. Tsipis Alexandros V. Stalikas 《Journal of computational chemistry》2015,36(17):1334-1347
The electronic, bonding, and photophysical properties of one‐dimensional [CuCN]n (n = 1–10) chains, 2‐D [CuCN]n (n = 2–10) nanorings, and 3‐D [Cun(CN)n]m (n = 4, m = 2, 3; n = 10, m = 2) tubes are investigated by means of a multitude of computational methodologies using density functional theory (DFT) and time‐dependent‐density‐functional theory (TD‐DFT) methods. The calculations revealed that the 2‐D [CuCN]n (n = 2–10) nanorings are more stable than the respective 1‐D [CuCN]n (n = 2–10) linear chains. The 2‐D [CuCN]n (n = 2–10) nanorings are predicted to form 3‐D [Cun(CN)n]m (n = 4, m = 2, 3; n = 10, m = 2) tubes supported by weak stacking interactions, which are clearly visualized as broad regions in real space by the 3D plots of the reduced density gradient. The bonding mechanism in the 1‐D [CuCN]n (n = 1–10) chains, 2‐D [CuCN]n (n = 2–10) nanorings, and 3‐D [Cun(CN)n]m (n = 4, m = 2, 3; n = 10, m = 2) tubes are easily recognized by a multitude of electronic structure calculation approaches. Particular emphasis was given on the photophysical properties (absorption and emission spectra) of the [CuCN]n chains, nanorings, and tubes which were simulated by TD‐DFT calculations. The absorption and emission bands in the simulated TD‐DFT absorption and emission spectra have thoroughly been analyzed and assignments of the contributing principal electronic transitions associated to individual excitations have been made. © 2015 Wiley Periodicals, Inc. 相似文献
2.
İskender Muz Osman Canko Murat Atiş Erdem Kamil Yıldırım 《Journal of computational chemistry》2015,36(6):385-391
The global minimum structures of AlB3H2n (n = 0–6) clusters are determined using the stochastic search method at the B3LYP/6–31G level of theory. These initially specified geometries are recalculated using B3LYP and CCSD(T) methods using the 6–311++G** basis set. The structural and electronic properties of the two lowest‐lying isomers are presented. The structural parameters obtained for aluminum borohydride are compared with the experimental and theoretical results. The H2 fragmentation energies of the most stable isomers are investigated. Chemical bonding analyses for the global minimum of AlB3H2n (n = 0–6) clusters are performed using the adaptive natural density partitioning method. © 2014 Wiley Periodicals, Inc. 相似文献
3.
Structure and further fragmentation of significant [a3 + Na − H]+ ions from sodium‐cationized peptides
下载免费PDF全文

Huixin Wang Bing Wang Zhonglin Wei Hao Zhang Xinhua Guo 《Journal of mass spectrometry : JMS》2015,50(1):212-219
A good understanding of gas‐phase fragmentation chemistry of peptides is important for accurate protein identification. Additional product ions obtained by sodiated peptides can provide useful sequence information supplementary to protonated peptides and improve protein identification. In this work, we first demonstrate that the sodiated a3 ions are abundant in the tandem mass spectra of sodium‐cationized peptides although observations of a3 ions have rarely been reported in protonated peptides. Quantum chemical calculations combined with tandem mass spectrometry are used to investigate this phenomenon by using a model tetrapeptide GGAG. Our results reveal that the most stable [a3 + Na ? H]+ ion is present as a bidentate linear structure in which the sodium cation coordinates to the two backbone carbonyl oxygen atoms. Due to structural inflexibility, further fragmentation of the [a3 + Na ? H]+ ion needs to overcome several relatively high energetic barriers to form [b2 + Na ? H]+ ion with a diketopiperazine structure. As a result, low abundance of [b2 + Na ? H]+ ion is detected at relatively high collision energy. In addition, our computational data also indicate that the common oxazolone pathway to generate [b2 + Na ? H]+ from the [a3 + Na ? H]+ ion is unlikely. The present work provides a mechanistic insight into how a sodium ion affects the fragmentation behaviors of peptides. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
4.
Theoretical investigation of the structures and spectroscopic properties of (H2O4)n (n = 1–4) clusters
下载免费PDF全文

Hong‐Dal Kim Hyun‐Il Seo Hui‐Seong Song Seung‐Joon Kim 《International journal of quantum chemistry》2016,116(19):1427-1436
Density functional theory and ab initio calculations were performed to elucidate the hydrogen interactions in (H2O4)n (n = 1–4) clusters. The optimized geometries, binding energies, and harmonic vibrational frequencies were predicted at various levels of theory. The trans conformer of the H2O4 monomer was predicted to be the most stable structure at the CCSD(T)/aug‐cc‐pVTZ level of theory. The binding energies per H2O4 monomer increased in absolute value by 9.0, 10.1, and 11.8 kcal/mol from n = 2 to n = 4 at the MP2/cc‐pVTZ level of theory (after the zero‐point vibrational energy and basis set superposition error corrections). This result implies that the intermolecular hydrogen bonds were stronger in the long‐chain clusters, that is, the formation of the longer chain in the (H2O4)n clusters was more energetically favorable. 相似文献
5.
6.
S. R. Veličković J. B. Đustebek F. M. Veljković M. V. Veljković 《Journal of mass spectrometry : JMS》2012,47(5):627-631
Clusters of the type LinX (X = halides) can be considered as potential building blocks of cluster‐assembly materials. In this work, LinBr (n = 2–7) clusters were obtained by a thermal ionization source of modified design and selected by a magnetic sector mass spectrometer. Positive ions of the LinBr (n = 4–7) cluster were detected for the first time. The order of ion intensities was Li2Br+ > Li4Br+ > Li5Br+ > Li6Br+ > Li3Br+. The ionization energies (IEs) were measured and found to be 3.95 ± 0.20 eV for Li2Br, 3.92 ± 0.20 eV for Li3Br, 3.93 ± 0.20 eV for Li4Br, 4.08 ± 0.20 eV for Li5Br, 4.14 ± 0.20 eV for Li6Br and 4.19 ± 0.20 eV for Li7Br. All of these clusters have a much lower ionization potential than that of the lithium atom, so they belong to the superalkali class. The IEs of LinBr (n = 2–4) are slightly lower than those in the corresponding small Lin or LinH clusters, whereas the IEs of LinBr are very similar to those of Lin or LinH for n = 5 and 6. The thermal ionization source of modified design is an important means for simultaneously obtaining and measuring the IEs of LinBr (n = 2–7) clusters (because their ions are thermodynamically stable with respect to the loss of lithium atoms in the gas phase) and increasingly contributes toward the development of clusters for practical applications. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
7.
Ambrish Kumar Srivastava Neeraj Misra 《International journal of quantum chemistry》2014,114(5):328-332
Density functional calculations on the ground state geometries and stabilities of PdOn species (n = 1–5) are performed in neutral as well as anionic forms. Calculations reveal that Pd can bind stably with four O atoms indicating the maximum oxidation state of Pd as high as +8. The electron affinities of PdOn suggest that these species behave as superhalogens for n ≥ 2. The large electron affinities of PdOn species along with stability of their anions point toward the synthesis of new class of compounds having unusual oxidizing capabilities. This possibility is explored by considering the interaction of PdO2 superhalogen with Ca atom which forms a stable CaPdO2 complex. In this complex, PdO2 unit closely mimics the behavior of O atom when compared with CaO molecule. © 2013 Wiley Periodicals, Inc. 相似文献
8.
Ringo Rey‐Villaverde Hubert Cybulski Jesús R. Flores Berta Fernández 《Journal of computational chemistry》2013,34(23):2020-2031
We have performed high‐level electronic structure computations on the most important species of the CHnP systems n = 1–3 to characterize them and provide reliable information about the equilibrium and vibrationally averaged molecular structures, rotational constants, vibrational frequencies (harmonic and anharmonic), formation enthalpies, and vertical excitation energies. Those chemical systems are intermediates for several important reactions and also prototypical phosphorus‐carbon compounds; however, they are often elusive to experimental detection. The present results significantly complement their knowledge and can be used as an assessment of the experimental information when available. The explicitly correlated coupled‐cluster RCCSD(T)‐F12 method has been used for geometry optimizations and vibrational frequency calculations. Vibrational configuration interaction theory has been used to account for anharmonicity effects. Basis‐set limit extrapolations have been carried out to determine accurate thermochemical quantities. Electronic excited states have been calculated with coupled‐cluster approaches and also by means of the multireference configuration interaction method. © 2013 Wiley Periodicals, Inc. 相似文献
9.
Theoretical insight of nitric oxide adsorption on neutral and charged Pdn (n = 1–5) clusters
下载免费PDF全文

Pakiza Begum Pranjal Gogoi Bhupesh Kumar Mishra Ramesh Chandra Deka 《International journal of quantum chemistry》2015,115(13):837-845
Density functional theory (DFT) calculations within the framework of generalized gradient approximation have been used to systematically investigate the adsorption of nitric oxide (NO) molecule on neutral, cationic, and anionic Pdn (n = 1–5) clusters. NO coordinate to one Pd atom of the cluster by the end‐on mode, where the tilted end‐on structure is more favorable due to the additional electron in the π* orbital. On the contrary, in the neutral and cationic Pd2 system, NO coordinates to the bridge site of cluster preferably by the side‐on mode. Charge transfer between Pd clusters and NO molecule and the corresponding weakening of N? O bond is an essential factor for the adsorption. The N? O stretching frequency follow the order of cationic > neutral > anionic. Binding energy of NO on anionic clusters is found to be greater than those of neutral and cationic clusters. © 2015 Wiley Periodicals, Inc. 相似文献
10.
Abdelhamid Soltani Abdel‐Ghani Boudjahem Mohammed Bettahar 《International journal of quantum chemistry》2016,116(5):346-356
The equilibrium geometries, relative stabilities, electronic and magnetic properties of small RhnCa (n = 1–9) clusters have been investigated by DFT calculations. The obtained results show that the three‐dimensional geometries are adopted for the lowest‐energy RhnCa clusters, and the doped Ca atom prefers locating on the surface of the cluster. Based on the analysis of the second‐order difference of energies, fragmentation energies and the HOMO‐LUMO energy gaps, we identify that the Rh4Ca, Rh6Ca, and Rh8Ca clusters are relatively more stable than their neighboring clusters, and the doping of Ca enhances the chemical reactivity of the pure Rhn clusters, suggesting that the RhnCa clusters can be used as nanocatalysts in many catalytic reactions. The magnetic moment for these clusters is mostly localized on the Rh atoms, and the doping Ca atom has no effect on the total magnetic moment of RhnCa clusters. The partial density of states, VIP, VEA, and η of these clusters in their ground‐state structures were also calculated and discussed. © 2015 Wiley Periodicals, Inc. 相似文献
11.
12.
Ambrish Kumar Srivastava Neeraj Misra 《International journal of quantum chemistry》2014,114(8):521-524
Theoretical density functional calculations are performed on AuOnq? species for q = 0–3 and n = 1–4 in various spin states. AuOn species are found to be relatively more stable in their mono‐anionic forms and behave as superhalogens for n ≥ 2. The maximum oxidation state of Au is found to be +7 in these species, but limited to +5. This fact is explained by considering interactions of AuOn superhalogens with K atom and which leads to the formation of more stable KAuOn complex up to n = 3, only. Thus, the present study is expected not only to motivate the synthesis of a new class of salts but also to assign the maximum oxidation state of gold. © 2013 Wiley Periodicals, Inc. 相似文献
13.
Computational studies of stable hexanuclear CulAgmAun (l + m + n = 6; l,m, n > 0) clusters
下载免费PDF全文

Alvaro Posada‐Amarillas Rafael Pacheco‐Contreras Sharity Morales‐Meza Mario Sanchez J. Christian Schön 《International journal of quantum chemistry》2016,116(13):1006-1015
A DFT study was carried out on the ground state structures of ternary CulAgmAun (l + m + n = 6) clusters, with the aim of investigating changes of thermal and kinetic stabilities as an effect of composition, as well as the composition dependence of the electrostatic potential, of stable planar structures. DFT optimizations were performed using the PBE functional and the SDD basis set. All the optimized structures adopt planar geometries with bent triangular structures. Calculated binding energy values are in the range 1.5–1.9 eV/atom, which shows their thermal stability. The predicted HOMO‐LUMO energy gap values are in the semiconductor region, providing a qualitative indication of a moderate kinetic stability. NBO analyses indicate the existence of two mechanisms promoting planar structural stability, one due to bonding‐antibonding orbital interaction, and the other one due to the well‐known spd hybridization. Wiberg indices were obtained showing interatomic bonding. Electrostatic potential calculations show the existence of nucleophilic attack regions preferentially around silver and copper atoms located at the vertices while electrophilic attack regions are found in the vicinity of gold atoms over the cluster plane. Apparently, charge transfer occurs toward gold from silver and copper atoms when the concentration is favorable in the proximity of gold atoms. In particular, if the small ternary clusters discussed here contain only one gold atom, then a high electron density is observed at the site of this gold atom. © 2016 Wiley Periodicals, Inc. 相似文献
14.
Structures and electronic properties of the small rubidium‐doped silicon RbSin (n = 1–12) clusters
下载免费PDF全文

Chang‐Geng Luo Chao‐Zheng He Hua‐Yang Li Gen‐Quan Li Shuai Zhang Xu‐Yan Liu 《International journal of quantum chemistry》2015,115(1):50-58
The geometries, relative stabilities, and electronic properties of small rubidium‐doped silicon clusters RbSin (n = 1–12) have been systematically investigated using the density functional theory at the B3LYP/GENECP level. The optimized structures show that lowest‐energy isomers of RbSin are similar with the ground state isomers of pure Sin clusters and prefer the three‐dimensional for n = 3–12. The relative stabilities of RbSin clusters have been analyzed on the averaged binding energy, fragmentation energy, second‐order energy difference, and highest occupied molecular orbital‐lowest unoccupied molecular orbital energy gap. The calculated results indicate that the doping of Rb atom enhances the chemical activity of Sin frame and the magic number is RbSi2. The Mulliken population analysis reveals that the charges in the corresponding RbSin clusters transfer from the Rb atom to Si atoms. The partial density of states and chemical hardness are also discussed. © 2014 Wiley Periodicals, Inc. 相似文献
15.
LaC3n+ (n=0, 1, 2) clusters have been studied using B3LYP (Becke 3-parameter–Lee-Yang-Parr) density functional method. The basis set is Dunning/Huzinaga valence double zeta for carbon and [2s2p2d] for lanthanum, denoted LANL1DZ. Four isomers are presented for each cluster; two of them are edge binding isomers with C2v symmetry, the other two are linear chains with C∞v symmetry. Meanwhile, two spin states for each isomer, that is, singlet and triplet for LaC3+, doublet and quartet for LaC3 and LaC32+, respectively, are also considered. Geometries, vibrational frequencies, infrared intensities, and other quantities are reported and discussed. The results indicate that at some spin states; the C2v symmetry isomers are the dominant structures, while for the other spin states, linear isomers are energetically favored. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 66 : 301–307, 1998 相似文献
16.
Pentaatomic planar tetracoordinate silicon with 14 valence electrons: A large‐scale global search of
(n + m = 4; q = 0, ±1, −2; X,Y = main group elements from H to Br)
下载免费PDF全文

Designing and characterizing the compounds with exotic structures and bonding that seemingly contrast the traditional chemical rules are a never‐ending goal. Although the silicon chemistry is dominated by the tetrahedral picture, many examples with the planar tetracoordinate‐Si skeletons have been discovered, among which simple species usually contain the 17/18 valence electrons. In this work, we report hitherto the most extensive structural search for the pentaatomic ptSi with 14 valence electrons, that is, (n + m = 4; q = 0, ±1, ?2; X, Y = main group elements from H to Br). For 129 studied systems, 50 systems have the ptSi structure as the local minimum. Promisingly, nine systems, that is, , HSiY3 (Y = Al/Ga), Ca3SiAl?, Mg4Si2?, C2LiSi, Si3Y2 (Y = Li/Na/K), each have the global minimum ptSi. The former six systems represent the first prediction. Interestingly, in HSiY3 (Y = Al/Ga), the H‐atom is only bonded to the ptSi‐center via a localized 2c–2e σ bond. This sharply contradicts the known pentaatomic planar‐centered systems, in which the ligands are actively involved in the ligand–ligand bonding besides being bonded to the planar center. Therefore, we proposed here that to generalize the 14e‐ptSi, two strategies can be applied as (1) introducing the alkaline/alkaline‐earth elements and (2) breaking the peripheral bonding. In light of the very limited global ptSi examples, the presently designed six systems with 14e are expected to enrich the exotic ptSi chemistry and welcome future laboratory confirmation. © 2014 Wiley Periodicals, Inc. 相似文献
17.
This study deals with a reinvestigation on the maximum oxidation state of gold. Density functional calculations are performed on geometries and stabilities of AuCln species for n = 1–6 in their neutral and anionic states. The calculations clearly reveal that the maximum oxidation state of Au is limited to +5. The high adiabatic electron affinities of AuCln (n ≥ 2), as compared to Cl, suggest their superhalogen behavior. The interaction of AuCln superhalogens with an alkali metal, K is found to be similar to but stronger than that between K and Cl, leading to the formation of KAuCln complexes. The stabilities of these complexes explore the possibility of synthesis of new class of salts by interaction of with appropriate metal cations. © 2014 Wiley Periodicals, Inc. 相似文献
18.
Structures of [M(Ura‐H)(H2O)n]+ (M = Mg,Ca, Sr,Ba; n = 1–3) complexes in the gas phase by IRMPD spectroscopy and theoretical studies
下载免费PDF全文

Barry Power Violette Haldys Jean‐Yves Salpin Travis D. Fridgen 《Journal of mass spectrometry : JMS》2016,51(3):236-244
The structures of singly and doubly (and for Mg, triply) hydrated group 2 metal dications bound to deprotonated uracil were explored in the gas phase using infrared multiple photon dissociation spectroscopy in the mid‐infrared region (1000–1900 cm?1) and the O–H/N–H stretching region (2700–3800 cm?1) in a Fourier transform ion cyclotron resonance mass spectrometer. The infrared multiple photon dissociation spectra were then compared with the computed IR spectra for various isomers. Calculations were performed using B3LYP with the 6‐31 + G(d,p) basis set for all atoms except Ba2+ and Sr2+, for which the LANL2DZ or the def2‐TZVPP basis sets with relativistic core potentials were used. Atoms‐in‐molecules analysis was conducted for all lowest energy structures. The lowest energy isomers in all cases are those in which the one uracil is deprotonated at the N3 position, and the metal is coordinated to the N3 and O4 of uracil. Regardless of the degree of solvation, all water molecules are bound to the metal ion and participate in a hydrogen bond with a carbonyl of the uracil moiety. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
19.
Geometric and electronic structures of silicon fluorides
(N = 4 – 6) and potential energy surfaces for dissociation reactions
→ SiF4 + F– and
→
+ F–
下载免费PDF全文

Vitaliy V. Koval Ruslan M. Minyaev Vladimir I. Minkin 《International journal of quantum chemistry》2016,116(18):1358-1361
The geometric and electronic structures of a series of silicon fluorides (n = 4 ? 6) were computationally studied with the aid of density functional theory (DFT) method with B3LYP and M06‐2X functionals and coupled cluster (CCSD and CCSD(T)) methods with 6‐311++G(d,p) basis set. The nature of the Si‐F bonds in these compounds was analyzed in the framework of the natural bond orbital theory and natural resonance theory. Energy characteristics (heats of reactions and energy barriers) of the dissociation reactions → SiF4 + F– and → + F– were calculated using the DFT and CCSD methods. The potential energy surface of elimination of a fluoride anion from has a specific topology with valley‐ridge inflection points corresponding to bifurcations of the minimal energy reaction path. © 2016 Wiley Periodicals, Inc. 相似文献
20.
Vladimir Sladek Kraiwan Punyain Michal Ilčin Vladimír Lukeš 《International journal of quantum chemistry》2014,114(13):869-878
Optimal structures, electronic and thermodynamic properties of the title complexes are presented. The stability of the hydrogen bonded systems is enhanced by the increasing dipole moments whereas in the halogen bonded systems it is also affected by the atom size in the diatomics. The consecutive addition of fluorine atoms to the pyridine moiety results in the decrease of the interaction energy for both types of the investigated bonds. The substitution on the meta sites in pyridine leads to more stable complexes than the substitution in the ortho position. The role of substitution on electric polarization and electrostatic forces is estimated by the symmetry‐adapted perturbation theory energy decomposition. The predicted Gibbs free energies of the complexes of mono fluorinated pyridines with HCl, HF, and ClF are from ?12 to ?22 kJ mol?1 at 200 K. The possible experimental identification of the complexes with respect to the vibrational modes is discussed. © 2014 Wiley Periodicals, Inc. 相似文献