首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thiolate‐catalyzed Tishchenko reaction has shown high chemoselectivity for the formation of double aromatic‐substituted esters. In the present study, the detailed reaction mechanism and, in particular, the origin of the observed high chemoselectivity, have been studied with DFT calculations. The catalytic cycle mainly consisted of three steps: 1,2‐addition, hydride transfer, and acyl transfer steps. The calculation results reproduce the experimental observations that 4‐chlorobenzaldehyde acts as the hydrogen donor (carbonyl part in the ester product), while 2‐methoxybenzaldehyde acts as the hydrogen acceptor (alcohol part in the product). The two main factors are responsible for such chemoselectivity: 1) in the rate‐determining hydride transfer step, the para‐chloride substituent facilitates the hydride‐donating process by weakening the steric hindrance, and 2) the ortho‐methoxy substituent facilitates the hydride‐accepting process by stabilizing the magnesium center (by compensating for the electron deficiency).  相似文献   

2.
Mechanistic studies have been performed for the recently developed, Ni‐catalysed selective cross‐coupling reaction between aryl and alkyl aldehydes. A mono‐carbonyl activation (MCA) mechanism (in which one of the carbonyl groups is activated by oxidative addition) was found to be the most favourable pathway, and the rate‐determining step is oxidative addition. Analysing the origin of the observed cross‐coupling selectivity, we found the most favourable carbonyl activation step requires both coordination of the aryl aldehyde and oxidative addition of the alkyl aldehyde. Therefore, the stronger π‐accepting ability of the aryl aldehyde (relative to alkyl aldehyde) and the ease of oxidative addition of the alkyl aldehyde (relative to aryl aldehyde) are responsible for the cross‐coupling selectivity.  相似文献   

3.
On contrary to the widely accepted conviction that the m/z 93 ion derived from phenol does not react with CO2, we demonstrate that it makes an adduct with CO2 to a small but demonstrable extent. For example, the product‐ion mass spectrum recorded for the m/z 98 ion derived from [2H6]phenol showed a small peak at m/z 142 when CO2 was used as the collision gas. The formation of an m/z 137 adduct ion from the m/z 93 ion (generated either directly from phenol, or indirectly from salicylic acid by in‐source decarboxylation) was demonstrated also by multiple‐reaction‐monitoring tandem mass spectrometric experiments. According to literature, the m/z 93 ion derived from salicylic acid does not undergo CO2 addition because it is deemed to exist only in the phenoxide form. This reaction has been previously proposed as a method for differentiating phenoxide ion from its isomeric hydroxyphenide ions. We propose that the m/z 93 ion, albeit small, exists also as the phenide form together with the predominant phenoxide ion. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Benzylpyridinium ions are often used as ‘thermometer ions’ in order to evaluate the internal energy distribution of the ions formed in sources of mass spectrometers. However, the detailed fragmentation pathways of these parent ions were not well established. In particular, fragmentation involving a rearrangement (RR) process may be influencing the simulated distribution curves. In a previous study, we suggested that such RR actually occurred under electrospray ionization/mass spectrometry (ESI/MS) and fast atom bombardment/mass spectrometry (FAB/MS) experiments. Here, we present a systematic study of different substituted benzylpyridinium ions. Theoretical calculations showed that RR fragmentation leading to substituted tropylium ions could occur under ‘soft ionization’ conditions, such as ESI or FAB. Experimental results obtained under gas‐phase reactivity conditions showed that some substituted benzylpiridinium compounds actually undergo RR fragmentations under ESI/MS conditions. Mass‐analyzed kinetic experiments were also carried out to gain information on the reaction pathways that actually occur, and these experimental results are in agreement with the reaction pathways theoretically proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The unimolecular gas‐phase elimination kinetics of 2‐methoxy‐1‐chloroethane, 3‐methoxy‐1‐chloropropane, and 4‐methoxyl‐1‐chloroburane has been studied by using density functional theory (DFT) methods to propose the most reasonable mechanisms of decomposition of the aforementioned compounds. Calculation results of 2‐methoxy‐1‐chloroethane and 3‐methoxy‐1‐chloropropane suggest dehydrochlorination through a concerted nonsynchronous four‐centered cyclic transition state (TS) to give the corresponding olefin. In the case of 4‐methoxyl‐1‐chloroburane, in addition to the 1,2‐elimination mechanism, the anchimeric assistance by the methoxy group, through a polar five‐centered cyclic TS, provides additional pathways to give 4‐methoxy‐butene, tetrahydrofuran and chloromethane. The bond polarization of the C? Cl, in the direction of Cδ+ ··· Clδ?, is the limiting step of these elimination reactions. The significant increase in rate together with the formation of a cyclic product tetrahydrofuran in the gas‐phase elimination of 4‐methoxyl‐1‐chloroburane is attributed to neighboring group participation of the oxygen of the methoxy group in the TS. The theoretical calculations show a good agreement with the reported experimental results. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

6.
The mechanism of the gas‐phase elimination kinetics of 2‐ethoxypyridine has been studied through the electronic structure calculations using density functional methods: B3LYP/6‐31G(d,p), B3LYP/6‐31++G(d,p), B3PW91/6‐31G(d,p), B3PW91/6‐31++G(d,p), MPW1PW91/6‐31G(d,p), MPW1PW91/6‐31++G(d,p), PBEPBE/6‐31G(d,p), PBEPBE/6‐31++G(d,p), PBE1PBE1/6‐31G(d,p), and PBE1PBE1/6‐31++G(d,p). The elimination reaction of 2‐ethoxypyridine occurs through a six‐centered transition state geometry involving the pyridine nitrogen, the substituted carbon of the aromatic ring, the ethoxy oxygen, two carbons of the ethoxy group, and a hydrogen atom, which migrates from the ethoxy group to the nitrogen to give 2‐pyridone and ethylene. The reaction mechanism appears to occur with the participation of π‐electrons, similar to alkyl vinyl ether elimination reaction, with simultaneous ethylene formation and hydrogen migration to the pyridine nitrogen producing 2‐pyridone. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

7.
8.
Treatment of mesoporous silicate SBA-15 with Sm[N(SiMe3)2]3 led to the formation of a novel organolanthanide/inorganic hybrid material [SBA-15]Sm[N(SiMe3)2]x via abstraction of N(SiMe3)2 by terminal silanol groups and subsequent surface silylation. The hybrid material was characterized by elemental analyses, IR spectroscopy, X-ray diffraction, and nitrogen sorption, indicating a successful tailoring inside the silicate SBA-15 and the maintenance of the well-ordered mesostructure. This hybrid material is a promising heterogeneous catalyst for the Tishchenko reaction, where it is superior to the homogeneous correspondent in deactivation behavior, reusability and relative tolerance to oxygen, particularly in the control of selectivity of mixed Tishchenko reaction due to the steric hindrance and the diffusion control derived from the surface confinement.  相似文献   

9.
We have already shown that the in-vacuum gas-phase Meerwein reaction of (thio)acylium ions is general in nature and useful for class-selective screening of cyclic (thio)epoxides. Herein we report that this gas-phase reaction can also be performed efficiently at atmospheric pressure under both electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) conditions. This alternative expands the range of molecules that can be reacted by gas-phase Meerwein reaction. Phenyl epoxide, thiirane, 3-methoxy-2,2-dimethyloxirane, propylene oxide, 2,2'-bioxirane, trans-1,3-diphenyl-2,3-epoxypropan-1-one, epichloridrine and propylene oxide are shown to react efficiently in both ESI and APCI conditions. Tetramethylurea (TMU) and (thio)TMU were both used as dopants, being co-injected with either toluene, acetonitrile or methanol solutions of the (thio)epoxides, with similar results. In both ESI and APCI, (thio)TMU is protonated preferentially, and these labile species dissociate promptly to yield (CH3)2N-C+=O and (CH3)2NCS+, which are the least acidic and most reactive (thio)acylium ions so far tested in the gas-phase Meerwein reaction. Under the low-energy ESI conditions set to favor both the formation of the (thio)acylium ion and ion/molecule reactions, (CH3)2NCO(S)+ react competitively with (thio)TMU to form acylated (thio)TMU and with the (thio)epoxide to form the characteristic Meerwein products. Enhanced selectivity in structural characterization or for the screening of (thio)epoxides is achieved by performing on-line collision-induced dissociation of Meerwein products, particularly for the more structurally complex (thio)epoxides.  相似文献   

10.
Gas‐phase reactions of isomeric nitrophenide ions and p‐halonitrophenide ions with acrylonitrile, methyl acrylate, and ethyl acrylate have been studied using mass spectrometry and computational methods. Depending on the structure of the α,β‐unsaturated compound, formation of adducts to the carbonyl group of the acrylate (for methyl acrylate and ethyl acrylate) and β‐adducts (adducts of p‐halonitrophenide ions to α,β‐unsaturated compounds in β position) was observed. Further transformations of these adducts lead to the products of elimination of an alcohol molecule and the anionic products of intramolecular substitution of a halogen atom, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Ion-molecule reactions between the O=P(OCH(3))(2) (+) phosphonium ions and five aliphatic esters (methyl acetate, methyl propionate, methyl 2-methylpropionate, methyl butyrate and ethyl acetate) were performed in a quadrupole ion trap mass spectrometer. The O=P(OCH(3))(2) (+) phosphonium ions, formed by electron ionization from neutral trimethyl phosphite, were found to react with aliphatic esters to give an adduct ion [RR'CHCOOR", O=P(OCH(3))(2)](+), which loses spontaneously a molecule of ketene CH(2)=CO or substituted ketenes RR'C=CO. Isotope-labeled methyl acetate was used to elucidate fragmentation mechanisms. The potential energy surface obtained from B3LYP/6-31G(d,p) calculations for the reaction between O=P(OCH(3))(2) (+) and methyl acetate is described.  相似文献   

13.
Møller-Plesset MP2/6-31G method was used to examine the gas-phase elimination of 2-substituted alkyl ethyl N,N-dimethylcarbamates. The results of these calculations support a concerted non-synchronous six-membered cyclic transition state mechanism for carbamates containing a Cβ–H bond at the alkyl side of the ester. These substrates produce the N,N-dimethylcarbamic acid and the corresponding olefin. The unstable intermediate, N,N-dimethylcarbamic acid, rapidly decomposes through a four-membered cyclic transition state to dimethylamine and CO2 gas. Correlation of the logarithm of theoretical rate coefficients against original Taft's σ* values gave an approximate straight line (ρ*=−1.39, r=0.9558 at 360 °C). In addition to this fact, when log krel is plotted against the theoretical log krel for 2-substituted ethyl N,N-dimethylcarbamates a reasonable straight line (r=0.9919 at 360 °C) is obtained, suggesting similar mechanism.  相似文献   

14.
Substitution reactions between gaseous ions and neutral substrate molecules are of ongoing high interest. To investigate these processes in a qualitative and quantitative manner, we have constructed a device, with which a defined amount of a volatile substrate can be mixed with a defined amount of helium gas and added into a three‐dimensional quadrupole ion trap. From the known inner volume of the device, the known ratio nsubstrate:nHe of the mixture, and the determined absolute partial pressure of helium in the ion trap, we can derive the partial pressure of the substrate in the ion trap and, thus, convert the directly observable pseudo–first‐order rate constants of the substitution reactions into absolute bimolecular rate constants. We have tested the device by investigating a series of SN2 reactions of Br ? and CF3CH2O ? anions as well as ligand exchange reactions of ligated Na+ cations. As the obtained results suggest, the described device makes it possible to determine the bimolecular rate constants of substitution reactions as well as other ion‐molecule reactions with satisfactory accuracy and reliability.  相似文献   

15.
Copper‐ and palladium‐mediated transmetalation and coupling reactions are the backbone to several synthetic methodologies in organic chemistry for C–C bond formation. Computer‐aided simulations using density functional theory (DFT) (B3LYP‐D3 functional with 6‐31G** and effective core potential (ECP)‐LACVP** for heavy atoms for optimizations and cc‐pVTZ(?f) and ECP‐LACV3P** for single‐point calculations) was used to shed light on the probable mechanism of a novel synergistic Cu/Pd catalysts for the coupling of alkene, (Bpin)2 (where, pin = pinacolate), and vinyl‐ or aryl‐halogenated analogues. Every single conceivable pathway was carefully contemplated, and the base minimum energy pathway was found effectively. The copper‐catalyzed nucleophilic generation yields anti‐Markovnikov product using styrene as an alkene. This study affirms quantitatively and accurately how the reaction proceeds and at which steps of the synergistic catalysis the demand of the transmetalation and nucleophile formation for the C–C coupling using phosphine ligands arise. We conclude that the E and Z selectivity depends on the stereochemistry of the substrates used.  相似文献   

16.
The gas‐phase thermal decomposition of 3‐hydroxypropionitrile, 3‐hydroxybutyronitrile, and 3‐hydroxy‐3‐methylbutyronitrile has been studied at the MP2/6‐31G(d) level of theory at 683.15 K and 0.06 atm. Results based both in energy and structure data seem to indicate a favorable route of decomposition via a six‐membered cyclic transition state (similar to those suggested for thermal decomposition of other related compounds, such as β‐hydroxyketones, β‐hydroxyalkenes, and β‐hydroxyalkynes) rather than a four‐membered cyclic transition state or even a quasiheterolytic pathway. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

17.
The hydrolysis reaction mechanisms of the phosphate group, with and without an adenosine connected to it, have been theoretically investigated at the B3LYP/6‐31G** level. It is found that each reaction is single‐channel with a two‐step process. When H2O approaches the phosphate group, a penta‐coordinated intermediate (IM1‐a) is formed first, followed by the H transfer reaction with P? O broken at the same time. This process belongs to the addition‐elimination process, similar to the carboxylate. In addition, the solvent effect has been studied by the polarizable continuum model (PCM). Our present calculations have rationalized and verified all the possible reaction channels. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

18.
对气相芳香亲电取代反应的一般机理、小碎片正离子的亲电取代反应特性、反应中间体结构及质子在芳香环内和芳香环间的迁移反应作了评述。  相似文献   

19.
Density functional theory (DFT) was employed at the B3LYP/6‐31+G* level to study complexes of 1O2 and 3O2 with the dye molecules proflavine, methylene blue, and acridine orange, which are useful in photodynamic therapy. It was found that the most stable complex between 1O2 and proflavine are formed when 1O2 is located above the central ring, while the most stable complex between 1O2 and methylene blue is formed when 1O2 is located above the molecular plane, but not above any of the rings, near the sulfur atom. 1O2 can make a stable complex with acridine orange, as it is located above the outer ring of the dye. The binding energies of the complexes of 1O2 with all three dyes are enhanced considerably in going from gas phase to aqueous media. The complexes of 3O2 with the dyes will be unstable in all cases, while those of 1O2 with the same will be quite stable and will not be dissociated due to thermal fluctuations at room temperature. In the complexes of 1O2 and 3O2 with the dyes, charge transfer occurs from the dyes to the O2 moiety, the amount of charge transfer being much more to 1O2 than to 3O2 in each case. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号