首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The analysis of complex mixtures is becoming increasingly important in various fields, such as nutrition, medicinal plants and metabolomics. The components contained in such complex mixtures are always characterized with diverse physiochemical properties that pose a major challenge during the optimization of various parameters using liquid chromatography‐mass spectrometer (LC‐MS). The parameter ‘CE energy’ that is normally set at a fixed value with a moderate range of CE spread during data‐dependent acquisition (DDA) analysis, a prevalent approach for untargeted identification, often fails to generate sufficient MS/MS fragment ions for untargeted identification of components from complex mixtures. Here we developed a simple and generally applicable acquisition method named stepped MSAll (sMSAll) in this study, aiming to obtain optimal MS/MS spectra for identification of chemically diverse compounds from complex mixtures. sMSAll collects serial MSAll scans acquired at low CE to gradually ramped‐up high CE values in a cycle that conventional DDA scans cannot afford. The resultant MS/MS spectra of each compound were compared and evaluated among serial MSAll scans, and the optimal spectra were used for identification. An untargeted data analysis strategy was then employed to analyze these optimal MS/MS spectra by searching common diagnostic ions and connecting the diagnostic ion families into a network via bridging components. This sMSAll‐based route enables identification of 71 natural products from a herbal preparation, whereas only 53 out of 71 compounds were identified using the classical DDA approach. Therefore, the sMSAll‐based approach is expected to find its wide applications for characterization of vastly diverse compounds with no priori knowledge from various complex mixtures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Car lubricant additives are added to mineral or synthetic base stocks to improve viscosity and resistance to oxidation of the lubricant and to limit wear of engines. As they belong to various chemical classes and are added to a very complex medium, the base stock, their detailed chromatographic analysis is very difficult and time consuming. In a previous paper, it was demonstrated that supercritical fluid chromatography (SFC) allows the elution of common low-molecular-weight additives. Since their total resolution could not be achieved owing to the limited peak capacity of packed columns, the hyphenation of selective and informative detection methods such as atomic emission detection (AED) was required. Further to results obtained in SFC-AED, this work describes the hyphenation of SFC to atmospheric pressure chemical ionisation ion trap mass spectrometry (MS). SFC–MS hyphenation is detailed: temperature, flow rates of gas and mobile phase introduced in the source, position of the restrictor, ionisation additives and conditions of autotune are studied. Car lubricant monitoring requires negative and positive ionisation modes with or without the addition of ionisation auxiliary solvent according to the nature of additives. Moreover, when sensitivity is of major concern for a selected additive, the autotuning routine of the MS has to be performed in conditions as close as possible to analytical conditions, i.e. under subcritical conditions. Unambiguous identification and structure elucidation of several additives in formulated car lubricants are also presented.  相似文献   

3.
The development of high performance lubricants has been driven by increasingly growing industrial demands and environmental concerns. Herein, we demonstrate oil‐soluble polymer brush‐grafted inorganic nanoparticles (hairy NPs) as highly effective lubricant additives for friction and wear reduction. A series of oil‐miscible poly(lauryl methacrylate) brush‐grafted silica and titania NPs were synthesized by surface‐initiated atom transfer radical polymerization. These hairy NPs showed exceptional stability in poly(alphaolefin) (PAO) base oil; no change in transparency was observed after being kept at ?20, 22, and 100 °C for ≥55 days. High‐contact stress ball‐on‐flat reciprocating sliding tribological tests at 100 °C showed that addition of 1 wt % of hairy NPs into PAO led to significant reductions in coefficient of friction (up to ≈40 %) and wear volume (up to ≈90 %). The excellent lubricating properties of hairy NPs were further elucidated by the characterization of the tribofilm formed on the flat. These hairy NPs represent a new type of lubricating oil additives with high efficiency in friction and wear reduction.  相似文献   

4.
Procyanidins are polymeric flavan‐3‐ones occurring in many plants with antioxidant and other beneficial bioactivities. They are composed of catechin and epicatechin monomeric units connected by single carbon‐carbon B‐type linkages or A‐type linkages containing both carbon‐carbon and carbon‐oxygen‐carbon bonds. Their polymeric structure makes analysis of procyanidin mixtures always difficult. Evaluation of procyanidins according to degree of polymerization (DP) using high‐performance liquid chromatography (HPLC) is time‐consuming and at best has resolved polymeric families up to DP‐17. To expedite studies of procyanidins, the utility of positive ion electrospray ion mobility‐mass spectrometry (IM‐MS) was investigated for the rapid separation and characterization of procyanidins in mixtures. Applying IM‐MS to analyse structurally defined standards containing up to five subunits, procyanidins could be resolved in less than 6 ms not only by degree of polymerization but also by linkage type. A‐type procyanidins could be resolved from B‐type and both could be at least partially resolved from mixed‐type procyanidins of the same DP. IM‐MS separated higher order procyanidins with DP of at least 24 from extracts of cranberry. As DP increased, the abundances of multiply‐charged procyanidins also increased. During IM‐MS of ions of similar m/z, the ion drift times decreased inversely with increasing charge state. Therefore, IM‐MS was shown to separate mixtures of procyanidins containing at least 24 interconnected subunits in less than 16 ms, not only according to DP, but also according to linkage type between subunits and charge state.  相似文献   

5.
Car lubricant additives are added to mineral or synthetic base stocks to improve viscosity and resistance to oxidation of the lubricant and to limit wear of engines. Their total amount in the commercial lubricant varies from a few percents to 20-25%. As they belong to various chemical classes and are added to a very complex medium, the base stock, their detailed chromatographic analysis is very difficult and time consuming as it should involve sample treatment and preparative scale separations in order to simplify the sample. The aim of this work is to determine the feasibility of the separation of low molecular weight lubricant additives using various packed columns with pure CO(2) as a mobile phase to enable implementation of flame ionisation detection as universal detector. This is part of a hypernated system including more sophisticated specific detectors, such as AED, FTIR or MS to obtain detailed structural information of compounds. This paper is devoted to the comparison of some stationary phases supposed to provide hydrocarbon group type separation (silica and normal phase) or separations on alkyl-bonded silica in non-aqueous mode of some selected classes of additives in test mixtures or in base stocks. Adsorption chromatography allows partial separation of additives from the base stocks while the direct elution of test additives can only be obtained on reversed phase supports having a very efficient silanol group protection so the interaction of the more polar compounds is much reduced. A two-dimensional scheme of analysis is also described. It combines adsorption chromatography to separate most of the polar additives from the base stock and alkyl-bonded silica for more detailed separation of the additives. However, overlapping between groups of compounds and the lack of resolution between some additives and the base stock should be addressed by the implementing of selective detectors.  相似文献   

6.
A W/O microemulsion reactor was used to prepare four kinds of modified lubricants: (i) modified lubricant 1, modified epoxidized microbial oil + rape oil in volume ratio of 1:1; (ii) modified lubricant 2, modified esterified microbial oil + rape oil in volume ratio of 1:3; (iii) modified lubricant 3, modified epoxidized rape oil; and (iv) modified lubricant 4, modified PAO. The individual modified lubricants were further modified with 0%, 0.5%, 1%, and 2% content of nano-Schiff base copper complex (nano-SBCC). A microtribometer was used to evaluate the friction coefficient between ball/flat point contacts immersed in the modified lubricants and operated in reciprocating and linear sliding mode. A comparison of the values of the friction coefficient with the lubricants further modified with nano-SBCC with those of their individual 0% nano-SBCC counterparts indicated significant decrease: (i) almost 19.18% was obtainable for the modified lubricant 1 with 2% of nano-Schiff base copper complex, (ii) almost 16.5% was obtainable for the modified lubricant 2 with 0.5% of nano-Schiff base copper complex; (iii) almost 7.42% was obtainable for the modified lubricant 3 with 1% of nano-SBCC; and (iv) almost 7.01% was obtainable for the modified lubricant 4 with 0.5% of nano-SBCC. These suggested that the addition of nano-Schiff base copper complex can efficiently decrease the friction coefficient of epoxidized or esterified microbial oil. Analyses of two-dimensional images, average profiles (across the mid-section y = 0 of the reciprocating sliding path), and three-dimensional topographies by confocal white light microscope for the worn surfaces of flats immersed in modified lubricant 1 and modified lubricant 2 suggested better wear-resistance of the modified lubricant 2 than that of the modified lubricant 1. The ability of wear resistance for the modified lubricant became better with the increasing content of nano-Schiff base copper complex from 0% to 2%. The study revealed the modification of epoxidized microbial oil + rape oil (1:1 volume ratio) and esterified microbial oil + rape oil (1:3 volume ratio) with Cu(II) chelate of bis(salicylaldehyde)ethylenediamine, reducing the magnitude of friction and wear because of their respective wear self-repairing ability. Such self-repairing ability furnishes the suitability of epoxidized microbial oil or esterified microbial oil to be effectively modified by nano-Schiff base copper complex and to substitute ordinary base oil as a mixture with rape oil.  相似文献   

7.
The continuous development in analytical instrumentation has brought the newly developed Orbitrap‐based gas chromatography / mass spectrometry (GC/MS) instrument into the forefront for the analysis of complex mixtures such as crude oil. Traditional instrumentation usually requires a choice to be made between mass resolving power or an efficient chromatographic separation, which ideally enables the distinction of structural isomers that is not possible by mass spectrometry alone. Now, these features can be combined, thus enabling a deeper understanding of the constituents of volatile samples on a molecular level. Although electron ionization is the most popular ionization method employed in GC/MS analysis, the need for softer ionization methods has led to the utilization of atmospheric pressure ionization sources. The last arrival to this family is the atmospheric pressure photoionization (APPI), which was originally developed for liquid chromatography / mass spectrometry (LC/MS). With a newly developed commercial GC‐APPI interface, it is possible to extend the characterization of unknown compounds. Here, first results about the capabilities of the GC/MS instrument under high or low energy EI or APPI are reported on a volatile gas condensate. The use of different ionization energies helps matching the low abundant molecular ions to the structurally important fragment ions. A broad range of compounds from polar to medium polar were successfully detected and complementary information regarding the analyte was obtained.  相似文献   

8.
Alkylation of a pair of complementary ribonucleotides, adenosine monophosphate (AMP) and uridine monophosphate (UMP), was accomplished by 1,2‐dodecyl‐epoxide (DE) in a oil‐in‐water microemulsion based on the cationic surfactant Cetyl‐trimethyl‐ammonium‐bromide, providing a suitable catalytic interface for the reagents. Several, often isomeric, alkylation products, bearing one or two hydroxy–dodecyl moieties on their structures, were identified in the reaction mixtures by high‐performance liquid chromatography coupled to electrospray ionization ion trap mass spectrometry. In particular, mass spectrometry (MS)/MS spectra, implemented by extracted ion chromatograms obtained for peculiar MS/MS product ions, indicated alkylation to occur on uracil and on uracil/phosphate OH groups in singly and doubly alkylated UMP, respectively. Adenine NH2 group and phosphate or ribose OH groups were found to be involved as such (single alkylation) or in combination, in the case of alkylated derivatives of AMP. The reaction of both endocyclic N and C?O groups (tautomerized to C? OH groups) of uracil and the predominance of nucleophilic attack to the more accessible carbon of the DE epoxydic bridge (the only exception being the reaction by the NH2 group of adenine) were inferred from MS3 spectra with the help of extracted ion chromatograms for specific fragment ions, after their structural characterization. Interestingly, alkylation on one of the uracil C?O groups and, partially, on the adenine NH2 group, both potentially involved in AMP/UMP base pairing in the micellar environment, were found to be hindered when both ribonucleotides were present in the reaction mixtures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Tandem mass spectrometry (MS/MS) is widely used for trace level sample analysis in complex mixtures. However, sample identification in MS/MS is challenging and not as trustworthy as with electron ionization (EI) mass spectral libraries. This paper presents a novel method for the combination of isotope abundance analysis (IAA) and EI‐MS/MS for improved sample identification even at trace level in complex matrices. Accordingly, the first quadrupole is scanned in a narrow range around the molecular ion group of isotopomers such as M+, [M+1]+ and [M+2]+, Q2 serves for collision‐induced dissociation to produce product ions while Q3 transfers the major sample product ions with low resolution, thus encompassing and uniformly transmitting all the product ion isotopomers. IAA can then be used to derive elemental formula information from the cleansed experimental data. IAA‐MS/MS was experimentally tested with perfluorotributylamine and a very good matching factor of 995 (out of 1000) was obtained for IAA on m/z 502, 503 and 504 (fragment ion isotopomers) while Q3 transmitted the m/z 264 product ion with a mass window of 6 m/z units. The IAA‐MS/MS method was further tested with the pesticide diazinon on its molecular ions m/z 304, 305 and 306 while Q3 was locked on its m/z 179 product ion with a mass window of 6 m/z units. Again, very good matching factors were obtained, even for 40 pg diazinon on‐column during its GC/MS analysis (match = 981). IAA‐MS/MS combines the traditional benefits of MS/MS in the removal of matrix interferences with the IAA power of elemental analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A novel multistage MS approach, insource collision-induced dissociation (CID) combined with Time Aligned Parallel (TAP) fragmentation, was established to study the fragmentation behavior of polycyclic polyprenylated acylphloroglucinols (PPAPs), which could provide a more reliable fragmentation relationship between precursor and daughter ions. The diagnostic ions for different subtypes of PPAPs and their fragmentation behaviors have been summarized. Moreover, a new and reliable multidimensional analytical workflow that combines ultrahigh performance liquid chromatography (UHPLC), data-independent mass spectrometry (MSE), and tandem MS with ion mobility (IM) has been optimized and established for the analysis of PPAPs in the plant Garcinia oblongifolia by diagnostic filtering. Diagnostic fragment ions were used to selectively screen PPAPs from extracts, whereas IM coupled to MS was used to maximize the peak capacity. Under the optimized UHPLC-IM-MSE and UHPLC-IM-MS/MS method, 140 PPAPs were detected from the crude extract of G. oblongifolia, and 10 of them were unambiguously identified by comparing them to the reference compounds. Among those PPAPs, 7 pairs of coeluting isobaric PPAPs that were indistinguishable by conventional UHPLC-HRMS alone, were further resolved using UHPLC-IM-MS. It is anticipated that the proposed method will be extended to the rapid screening and characterization of the other targeted or untargeted compounds, especially these coeluting isomers in complex samples.  相似文献   

11.
Top‐down multidimensional mass spectrometry, interfacing electrospray ionization (ESI) with ion mobility mass spectrometry (IM‐MS), and energy resolved (gradient) tandem mass spectrometry (gMS2) are employed to characterize the stoichiometries, architectures, and intrinsic stabilities of coordinatively bound supramolecular polymers containing terpyridine functionalized ligands. As a soft ionization method, ESI prevents or minimizes unwanted assembly destruction. The IM dimension affords separation of the supramolecular ions by charge and collision cross‐section (a function of size and shape). The mobility separated ions are subsequently identified by their mass‐to‐charge‐ratios and isotope patterns in the orthogonal MS dimension. Finally, the gMS2 dimension reveals bond breaking proclivities and disintegration pathways of the assemblies. The described methodology does not require high sample purity due to the dispersive nature of the IM and MS steps. Its utility is demonstrated with the comprehensive analysis of bisterpyridine‐based metallomacrocycle mixtures and a tristerpyridine based complex with 3‐D nanosphere‐like architecture.

  相似文献   


12.
《印度化学会志》2023,100(3):100909
Concerns and restrictions around contamination and environmental pollution are developing. The production of waste cooking oil and the pollution brought on by mineral oils are two important issues. The FSSAI's new standards state that cooking oil that contains more than 25% polar compounds is inappropriate for use and should be discarded. Therefore, both issues can be resolved with the aid of chemical modifications to waste cooking oil. Waste cooking oils are an attractive alternative to mineral oils because they are biodegradable and renewable sources of lubricants. The goal of the current research work is to create an environmentally friendly lubricant through transesterification reaction. Fatty acid methyl esters (FAMEs) of WCO with various alcohols (1-Heptanol, 2-Ethyl-1-Hexanol & Neopentyl Glycol) with diverse branching were used to create bio lubricant. As a heterogeneous catalyst, zinc acetate was used to carry out the reaction. Complex esters, which have been produced, have the potential to be used as biodegradable lubricants in industrial lubricant applications. Using the GC-MS technique, the structure of the generated bio lubricant was examined. The structural modification of waste cooking oil resulted in improvement in both physicochemical and tribological properties. The created bio lubricant had improved flash and fire points as well as a superior viscosity index (>120). The generated bio lubricant possesses friction characteristics that are comparable to those of commercial mineral oil-based lubricants. According to the results of this study, waste cooking oil lubricant has a lot of potential for use as a base stock due to its favorable biodegradability and tribological performance.  相似文献   

13.
An integrated differential approach to the characterization of complex mixtures is presented which includes the targeting of liquid chromatography (LC) peaks for identification using characteristic UV adsorption of the LC peak, subsequent molecular weight and formula determination using accurate mass LC mass spectrometry (MS), and structure characterization using accurate mass LC-tandem mass spectrometry. The use of differential UV adsorption aids in narrowing the scope of the study to only specific peaks of interest. Accurate mass measurement of the molecular ion species provides molecular weight information as well as atomic composition information. The tandem MS (MS/MS) spectra provide fragmentation information which allows for structural characterization of each component. Accurate mass assignment of each of the fragment ions in the MS/MS spectrum provides atomic composition for each of the fragment ions and thus further aids in the structural characterization. These experiments are facilitated through the use of on-line LC-MS and LC-MS/MS with in-line UV detection. A synthetic toxic oil (STO) related to Toxic Oil Syndrome is studied with a focus on possible contaminants resulting from the interaction of aniline, used as a denaturant, with the normal components of the oil. A differential analysis between the STO and a control oil is performed. LC peaks were targeted using UV absorbance to indicate the possible presence of the aniline moiety. Further differential analysis was performed through the determination of the MS signals associated with each component separated on the LC. Finally, the MS/MS data was also used to determine if the fragmentation of the targeted components indicated the presence of aniline. The MS/MS and accurate mass data were used to assign the structures for the targeted components.  相似文献   

14.
Autoxidation of flavan‐3‐ols was carried out in aqueous/methanol model solutions under mildly acidic conditions (pH 6.0), and these autoxidation products were analyzed by using high performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (MS/MS). The results showed that (+)‐catechins and (?)‐epicatechins generated autoxidation reaction with each other to form a series of oligomers that had the same [M ? H]? molecular ions (MS1) as those of natural procyanidins, but had completely different fragment ions (MS2). According to MS/MS analysis, the major fragments of these oligomers were derived not only from the retro‐Diels–Alder (RDA) dissociations on the C‐rings of the flavan‐3‐ol units, but also from the quinone‐methide (QM) cleavage of the interflavan linkages (IFL), and thus they were identified as B‐type dehydrodicatechins, B‐type dehydrotricatechins and A‐type dehydrotricatechins, respectively. The potential structures of their [M ? H]? molecular ions and partial fragment ions were deduced on the basis of the MS/MS characterization and the oxidation of flavan‐3‐ols in previous reports. Some specific fragment ions were found to be very useful for identifying the autoxidation oligomers (the B‐type dehydrodicatechins at m/z 393, the B‐type dehydrotricatechins at m/z 681 and the A‐type dehydrotricatechins at m/z 725). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
A successful preparation of Schiff base and Schiff base copper complex was carried out directly in polar base oil (vegetable oil) using a water/oil microemulsion reactor. The prepared nanometer sized Schiff base and Schiff base copper complex dispersed uniformly and spontaneously in the oil. The nanometer sized particles of the Cu(II) chelate of bissalicylaldehyde-ethylenediamine and the bissalicylaldehyde-ethylenediamine in oil were observed directly by SEM. Owing to a modification of the polar base oil (vegetable oil) by 1 wt % of nano-scale Cu(II) chelate of bissalicylaldehyde-ethylenediamine and 1 wt % of bissalicylaldehyde-ethylenediamine, the last nonseizure load had gone up 40% over that of the original ones. It was verified by AES analysis that steel/steel rubbing pairs went through a selective transfer process under lubrication with the modified polar lubricant. It was suggested that the mechanism of the improvement of tribological characteristics of the modified lubricant was selective transfer effect. An antibacterial activity of the modified lubricant was inspected also. The article is published in the original.  相似文献   

16.
17.
Fast and efficient ultra‐performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) analysis of short interfering RNA oligonucleotides was used for identity confirmation of the target sequence‐related impurities. Multiple truncated oligonucleotides and metabolites were identified based on the accurate mass, and their presumed sequence was confirmed by MS/MS and MSE (alternating low and elevated collision energy scanning modes) methods. Based on the resulting fragmentation of native and chemically modified oligonucleotides, it was found that the MSE technique is as efficient as the traditional MS/MS method, yet MSE is more general, faster, and capable of producing higher signal intensities of fragment ions. Fragmentation patterns of modified oligonucleotides were investigated using RNA 2′‐ribose substitutions, phosphorothioate RNA, and LNA modifications. The developed sequence confirmation method that uses the MSE approach was applied to the analysis of in vitro hydrolyzed RNA oligonucleotide. The target RNA and metabolites, including the structural isomers, were resolved by UPLC, and their identity was confirmed by MSE. Simultaneous RNA truncations from both termini were observed. The UPLC quadrupole time‐of‐flight (QTOF) MS/MS and MSE methods were shown to be an effective tool for the analysis and sequence confirmation of complex oligonucleotide mixtures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Because mass spectrometers provide their own dispersion and resolution of analytes, electrospray ionization mass spectrometry (ESI‐MS) has become a workhorse for the characterization of complex mixtures from aerosols to crude oil. Unfortunately, ESI mass spectra commonly contain multimers, adducts and fragments. For the characterization of complex mixtures of unknown initial composition, this presents a significant concern. Mixed‐multimer formation could potentially lead to results that bare no resemblance to the original mixture. Conversely, ESI‐MS has continually reflected subtle differences between natural organic matter mixtures that are in agreement with prediction or theory. Knowing the real limitations of the technique is therefore critical to avoiding both over‐interpretation and unwarranted skepticism. Here, data were collected on four mass spectrometers under a battery of conditions. Results indicate that formation of unrepresentative ions cannot entirely be ruled out, but non‐covalent multimers do not appear to make a major contribution to typical natural organic matter spectra based on collision‐induced dissociation results. Multimers also appear notably reduced when a cooling gas is present in the accumulation region of the mass spectrometer. For less complex mixtures, the choice of spray solvent can make a difference, but generally spectrum cleanliness (i.e. representativeness) comes at the price of increased selectivity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
In this work, rapid‐resolution liquid chromatography (RRLC) coupled to electrospray ionization time‐of‐flight mass spectrometry (ESI‐TOF‐MS) and ion trap multiple mass spectrometry (IT‐MSn) has been applied to separate and characterize eleven isomers of oleuropein aglycon in fourteen Spanish extra‐virgin olive oils. After the extra‐virgin olive oil sample had been dissolved in hexane and cleaned up by a diol‐bonded phase solid‐phase extraction (SPE) cartridge, the eluting extract was resolved in methanol and analyzed on an Angilent 1200 system with a 4.6 × 150 mm, 1.8 µm Zorbax Eclipse plus C18 column. Mass spectrometry was carried out on a Bruker Daltonics microTOF mass spectrometer and a Bruker Daltonics ion trap mass spectrometer. The characterization of isomers of oleuropein aglycon was based on accurate mass data and the isotope function of characteristic fragment ions in the studied compounds by TOF‐MS, and the fragment ions were further confirmed by IT‐MSn. The fragmentation pathway of oleuropein aglycon was successfully elucidated and all possible transformations among isomers of oleuropein aglycon were suggested. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Lubricant oils are known to decrease the friction coefficient between two contacting surfaces. It is essential for the correct function of almost the totality of mechanical machinery working in the entire world. Lubricant oils consist of about 80% of oily base stocks which attributes to their properties of viscosity, stability, and pour point to the lubricant plus additives supplemented to improve these properties. Petroleum lubricants are usually environmentally unacceptable due to their low biodegradability and toxicity. These oils contaminate the air, soil, and drinking water and affect human and plant life to a great extent. Thus, the demand for environmentally acceptable lubricants is increasing along with the public concerns for a pollution-free environment. Plant oils are promising as base fluid for biolubricants because of their excellent lubricity, biodegradability, viscosity–temperature characteristics, and low volatility. The purpose of this paper is to present a survey of the current status of biolubricating oil. This research provides an overview on the synthesis, tribochemical behavior; the effect of structure on friction/wear, load-bearing capacity, resistance to rise in specimen temperature, and varying response of antiwear/extreme-pressure additives in the presence of vegetable oil/derivative structures has also been discussed. Though a significant number of papers have been published in this area, there is still much to explore. A proper selection of base oil and additives is therefore essential for an efficient synthesis of biolubricating oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号