首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alternating copolymerization of propylene oxide (PO) and carbon dioxide (CO2) was realized under mild conditions with a moderate turnover frequency (TOF), employing sole bifunctional cobalt salen complexes containing Lewis acid metal center and covalent bonded Lewis base on the ligand. Variation of the covalent bonded Lewis base substituents on the salen ligands could tailor the catalytic activity with TOF changing from 19.3 to 34.9 h?1, polymeric/cyclic carbonate selectivity from 95.3 to 72.8%, and the head‐to‐tail structure in the polymer from 72.2 to 86.0%. The IR analysis confirmed that the Lewis base moiety on one molecule could coordinate with cobalt center of adjacent molecule, playing similar role to the Salen metal complex/Lewis base binary catalytic system. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 359–365, 2010  相似文献   

2.
In the direct Mannich reaction and synthesis of α,β-unsaturated ketones, the use of organobismuth complexes as catalysts leads to high diastereoselectivity and products of single trans conformation. In this paper, we illustrate the relationship between structure and catalytic activity as well as diastereoselectivity of organobismuth complexes having a 5,6,7,12-tetrahydrodibenz [c,f][1,5]thiobismocine framework as well as bearing a butterfly-shaped sulfur-bridged ligand and tunable anions. With the exposed bismuth center acting as a Lewis acid site and the uncoordinated lone pair electrons of sulfur as a Lewis base site, the cationic organobismuth complexes work as bifunctional Lewis acid/base catalysts. Due to the steric influence of the butterfly-shaped structure and synergistic effect of Lewis acid and Lewis base centers, the complexes can direct substrate attack in organic synthesis. By adjusting the electron-withdrawing ability of the counter anions, the S-Bi bond strength can be regulated, leading to a significant change in Lewis acidity and Lewis basicity as well as catalytic activity. Through synergistic modulation of the above effects, one can control the diastereoselectivity of the organobismuth complexes for the generation of a single diastereoisomer.  相似文献   

3.
Donor-acceptor complexes of borazine (BZ) and its substituted derivatives with Lewis acids (A = MCl(3), MBr(3); M = B, Al, Ga) and Lewis bases (D = NH(3), Py) have been theoretically studied at the B3LYP/TZVP level of theory. The calculations showed that complexes with Lewis bases only are unstable with respect to dissociation into their components, while complexes with Lewis acids only (such as aluminum and gallium trihalides) are stable. It was shown that formation of ternary D→BZ→A complexes may be achieved by subsequent introduction of the Lewis acid (acceptor A) and the Lewis base (donor D) to borazine. The nature of substituents in the borazine ring, their number, and position were shown to have only minor influence on the stability of ternary D→BZ→A complexes due to the compensation effect. Much weaker acceptor properties of borazine are explained in terms of large endothermic pyramidalization energy of the boron center in the borazine ring. In contrast to borazine, binary complexes of the isoelectronic benzene were predicted to be weakly bound even in the case of very strong Lewis acids; ternary DA complexes of benzene were predicted to be unbound. The donor-acceptor complex formation was predicted to significantly reduce both the endothermicity (by 70-95 kJ mol(-1)) and the activation energy (by 40-70 kJ mol(-1)) for the borazine hydrogenation. Thus, activation of the borazine ring by Lewis acids may be a facile way for the hydrogenation of borazines and polyborazines.  相似文献   

4.
Michael W. Fennie 《Tetrahedron》2005,61(26):6249-6265
Metal complexes of C2-symmetric Lewis acid/Lewis base salen ligands provide bifunctional activation resulting in rapid rates in the enantioselective addition of diethylzinc to aldehydes (up to 92% ee). Further experiments probed the reactivity of the individual Lewis acid and Lewis base components of the catalyst and established that both moieties are essential for asymmetric catalysis. These catalysts are also effective in the asymmetric addition of diethylzinc to α-ketoesters. This finding is significant because α-ketoesters alone serve as their own ligands to accelerate racemic 1,2-carbonyl addition of Et2Zn and racemic carbonyl reduction. The latter proceeds via a metalloene pathway, and often accounts for the predominant product. Singular Lewis acid catalysts do not accelerate enantioselective 1,2-addition over these two competing paths. The bifunctional amino salen catalysts, however, rapidly provide enantioenriched 1,2-addition products in excellent yield, complete chemoselectivity, and good enantioselectivity (up to 88% ee). A library of the bifunctional amino salens was synthesized and evaluated in this reaction. The utility of the α-ketoester method has been demonstrated in the synthesis of an opiate antagonist.  相似文献   

5.
Catalysis with lanthanide (Ln) complexes has been underestimated for long time, although Ln(III) complexes have great advantages as Lewis acid catalysts for "asymmetric" carbon-carbon bond-forming reactions. Lanthanide complexes are highly active in ligand-substitution reactions, especially with hard ligands. The association with substrates and dissociation of products are achieved fast enough for high catalyst efficiency. The asymmetric catalysis of organic reactions can be greatly advanced by the use of Ln complexes with chiral ligands such as binaphthol (binol). Ln(II) complexes are good reducing agents, which can be used in a wide variety of synthetically important reactions; when chiral ligands are used, many of these reactions are highly stereoselective. In the context of "green chemistry", the development of asymmetric Ln catalysts, and their recyclable use, is of increasing importance. This review gives an overview of the most recent developments in catalysis with lanthanide(II) and lanthanide(III) complexes.  相似文献   

6.
Lewis-base adducts of tris(β -diketonato)lanthanide(III) complexes were prepared, where the β -diketone is para -alkoxy-substituted 1,3-diphenyl-1,3-propanedione. These compounds are the first examples of liquid crystalline lanthanide complexes in which the mesomorphism is introduced via a β -diketonate ligand. Depending on the type of the Lewis base, the metallomesogens exhibit a monotropic smectic A or a monotropic highly ordered smectic phase. Intense photoluminescence was observed for the europium(III) complexes at room temperature.  相似文献   

7.
Lewis-base adducts of tris( β-diketonato)lanthanide(III) complexes were prepared, where the β-diketone is para -alkoxy-substituted 1,3-diphenyl-1,3-propanedione. These compounds are the first examples of liquid crystalline lanthanide complexes in which the mesomorphism is introduced via a β-diketonate ligand. Depending on the type of the Lewis base, the metallomesogens exhibit a monotropic smectic A or a monotropic highly ordered smectic phase. Intense photoluminescence was observed for the europium(III) complexes at room temperature.  相似文献   

8.
1:1 molecular complexes of acetonitrile and hydrogen cyanide with silicon and germanium tetrafluorides have been isolated and studied in argon matrices at 14 K. The infrafed spectra of these complexes indicate that the acid and base subunits retain their structural integrity, but are perturbed in the complexes. The spectra indicate that all of the complexes are bound through the nitrogen of the nitrile group to the silicon or germanium atom; in this capacity, HCN is serving as a Lewis base, rather than as a Bronsted acid, as is more commonly the case. In the GeF4 · HCN complex, for example, The C---H stretching mode was shifted 15 cm−1 to lower energy, the C---N stretch roughly 40 cm−1 to higher energy, and the bending mode approximately 30 cmt- to higher energy. In addition, a number of perturbed modes of the acid subunit were observed; their locations are in good agreement with previous studies of GeF4 complexes.  相似文献   

9.
A highly enantioselective dialkylzinc (R(2)(2)Zn) addition to a series of aromatic, aliphatic, and heteroaromatic aldehydes (5) was developed based on conjugate Lewis acid-Lewis base catalysis. Bifunctional BINOL ligands bearing phosphine oxides [P(=O)R(2)] (7), phosphonates [P(=O)(OR)(2)] (8 and 9), or phosphoramides [P(=O)(NR(2))(2)] (10) at the 3,3'-positions were prepared by using a phospho-Fries rearrangement as a key step. The coordination of a NaphO-Zn(II)-R(2) center as a Lewis acid to a carbonyl group in a substrate and the activation of R(2)(2)Zn(II) with a phosphoryl group (P=O) as a Lewis base in the 3,3'-diphosphoryl-BINOL-Zn(II) catalyst could promote carbon-carbon bond formation with high enantioselectivities (up to >99% ee). Mechanistic studies were performed by X-ray analyses of a free ligand (7) and a tetranuclear Zn(II) cluster (21), a 31P NMR experiment on Zn(II) complexes, an absence of nonlinear effect between the ligand (7) and Et-adduct of benzaldehyde, and stoichiometric reactions with some chiral or achiral Zn(II) complexes to propose a transition-state assembly including monomeric active intermediates.  相似文献   

10.
The selectivity and retention properties of a zirconia stationary phase were reversibly altered using various ligands containing Lewis base functional groups. A simple loading procedure allowed a variety of ligands to be attached to the zirconia surface via Lewis interactions. The resulting stationary phases were shown to be stable and produced different selectivity and retention properties from the native zirconia material. The metal oxide adsorbent was converted to a diol-type stationary phase using glucose-6-phosphate for use under normal-phase conditions. Reversed-phase supports were produced by loading either octyl- or octadecylphosphonic acid onto the native zirconia support. The properties of these new phases were then compared to commercially available bonded silica analogs. Ligands bound to the surface in this manner were effectively removed and the native zirconia was regenerated using a dilute base wash procedure.  相似文献   

11.
Determination of the crystal structure of 1,2,3,4-tetrahydro-1-trimethylsilyl-1,10-phenanthroline has shown that coordination geometry at silicon may be regarded as a strongly distorted trigonal bipyramid or as a distorted tetrahedron, depending on where the boundary between bonded and non-bonded interactions is fixed. An intramolecular Si…N Lewis acid base interaction (2.689(8) Å) is present; the Si…N distance is 54% longer than the SiN “single bond” (1.746(8) Å) in the molecule. The structural details for the title compound and other pentacoordinated silicon complexes are used as a base for mapping the expansion of coordination at silicon from four to five. The correlation diagrams are interpreted in terms of geometrical transformations along the SN2 inversion pathway. They provide a possible model for the molecular motions of dynamic rearrangements involving an intermediate alteration of coordination number (5 → 4 å 5) at Si in chelated complexes of pentacoordinate silicon.  相似文献   

12.
Polymeric Schiff base ligands were synthesized using 2-hydroxybenzaldehyde (L2), 4-hydroxy-3-methoxybenzaldehyde (L4), and 5-aminoisophthalic acid. The nanostructured complexes were then synthesized using Ni2+, Cu2+, and Mn3+. The ligands and complexes thus synthesized were characterized using Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis (TGA), and field-emission scanning electron microscopy. The thermal stability of the complexes was confirmed using TGA. The synthesized complexes were used as catalysts in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol in an aqueous phase in the presence of sodium borohydride. In this work, the catalytic reactivity of nanostructured complexes was compared using the rate constant (k) of the reaction. The reaction time for the reduction of 4-NP was 5–14 min for different complexes. The catalytic system based on Ni2+/2-hydroxybenzaldehyde was the most active and displayed reusability in the reduction of 4-NP.  相似文献   

13.
Two Schiff base ligands bearing organic acid moiety, vis., N-(2-thienylmethylidene)-2-amino-4-chlorobenzoic acid (HL(1)) and N-(2-hydroxybenzylidene)-2-amino-4-chlorobenzoic acid (H(2)L(2)) have been synthesized by the interaction of 2-thiophenecarboxaldehyde and 2-hydroxybenzaldehyde with 2-amino-4-chlorobenzoic acid. Co(II), Ni(II), Cu(II) and Zn(II) complexes of these ligands have been prepared. They are characterized on the basis of analytical data, molar conductance, IR, (1)H NMR, UV-vis, mass spectra, magnetic measurements, thermal analysis and X-ray powder diffraction technique. The molar conductance data reveal that these complexes are non-electrolytes. The ligands are coordinated to the metal ions in a terdentate manner with ONO/ONS donor sites of the carbonyl oxygen, azomethine nitrogen and phenolic oxygen or thiophenic sulphur. An octahedral structure is proposed for the prepared metal complexes and some ligand field parameters (D(q), B and beta) in addition to CFSE were calculated. The thermal stability of the metal complexes is evaluated. The Schiff base ligands and their metal complexes have been tested against four species of bacteria as well as four species of fungi and the results have been compared with some known antibiotics.  相似文献   

14.
Liu Z  Anson FC 《Inorganic chemistry》2001,40(6):1329-1333
Fifteen Schiff base ligands were synthesized and used to form complexes with vanadium in oxidation states III, IV, and V. Electrochemical and spectral characteristics of the complexes were evaluated and compared. In acidified solutions in acetonitrile the vanadium(IV) complexes undergo reversible disproportionation to form V(III) and V(V) complexes. With several of the ligands the V(III) complexes are much more stable in the presence of acid than is the previously studied complex with salen, an unelaborated Schiff base ligand (H(2) salen = N,N'-ethylenebis(salicylideneamine)). Equilibrium constants for the disproportionation were evaluated. The vanadium(III) complexes reduce dioxygen to form two oxo ligands. The reaction is stoichiometric in the absence of acid, and second-order rate constants were evaluated. In the presence of acid some of the complexes investigated participate in a catalytic electroreduction of dioxygen.  相似文献   

15.
《Tetrahedron: Asymmetry》2005,16(21):3469-3479
Several attempts have been made to transform the organometallic Re(VII) compound MTO and the (MoO2)2+ moiety to chiral epoxidation catalysts by addition of chiral organic ligands. Being very efficient epoxidation catalysts in achiral reactions, it was hoped that these compounds could be transformed into chiral epoxidation catalysts by adding chiral Lewis base ligands. The major flaw of most of these attempts, however, was the weak coordination of the chiral Lewis base ligands to the metal center, which led either to high ees only at the very beginning of the catalytic reaction (low conversion) or to generally low enantiomeric excesses. The heterogenisation of the Mo(VI) complexes was, at least in some cases, successfully achieved but with the same drawbacks with respect to the ees as in the homogeneous phase. Currently, attempts are being made to synthesize organometallic Re(VII) and Mo(VI) complexes with stronger interactions between the metal containing moiety and the chiral ligand(s).  相似文献   

16.
The asymmetric addition of trimethylsilyl cyanide to aldehydes can be catalysed by Lewis acids and/or Lewis bases, which activate the aldehyde and trimethylsilyl cyanide, respectively. It is not always apparent from the structure of the catalyst whether Lewis acid or Lewis base catalysis predominates. To investigate this in the context of using salen complexes of titanium, vanadium and aluminium as catalysts, a Hammett analysis of asymmetric cyanohydrin synthesis was undertaken. When Lewis acid catalysis is dominant, a significantly positive reaction constant is observed, whereas reactions dominated by Lewis base catalysis give much smaller reaction constants. [{Ti(salen)O}2] was found to show the highest degree of Lewis acid catalysis, whereas two [VO(salen)X] (X=EtOSO3 or NCS) complexes both displayed lower degrees of Lewis acid catalysis. In the case of reactions catalysed by [{Al(salen)}2O] and triphenylphosphine oxide, a non‐linear Hammett plot was observed, which is indicative of a change in mechanism with increasing Lewis base catalysis as the carbonyl compound becomes more electron‐deficient. These results suggested that the aluminium complex/triphenylphosphine oxide catalyst system should also catalyse the asymmetric addition of trimethylsilyl cyanide to ketones and this was found to be the case.  相似文献   

17.
Several Schiff-base ligands readily form complexes with methyltrioxorhenium(VII) (MTO) by undergoing a hydrogen transfer from a ligand-bound OH group to a ligand N atom. The resulting complexes are stable at room temperature and can be handled and stored in air without problems. Due to the steric demands of the ligands they display distorted trigonal-bipyramidal structures in the solid state, as shown by X-ray crystallography, with the O(-) moiety binding to the Lewis acidic Re atom and the Re-bound methyl group being located either in cis or trans position to the Schiff base. In solution, however, the steric differences seem not to be maintained, as can be deduced from (17)O NMR spectroscopy. Furthermore, the Schiff-base ligands exchange with donor ligands. Nevertheless, the catalytic behaviour is influenced significantly by the Schiff bases coordinated to the MTO moiety, which lead either to high selectivities and good activities or to catalyst decomposition. A large excess of ligand, in contrast to the observations with aromatic N-donor ligands, is detrimental to the catalytic performance as it leads to catalyst decomposition.  相似文献   

18.
[reaction: see text] C(2)-symmetric tridentate bis(oxazoline) and bis(thiazoline) ligands with a diphenylamine backbone have been investigated in the catalytic asymmetric Henry reaction of alpha-keto esters with different Lewis acids. Their Cu(OTf)(2) complexes furnished S enantiomers, while Et(2)Zn complexes afforded R enantiomers, both of them with higher enantioselectivities (up to 85% ee). Reversal of enantioselectivity in asymmetric Henry reactions was achieved with the same chiral ligand by changing the Lewis acid center from Cu(II) to Zn(II). The results show that the NH group in C(2)-symmetric tridentate chiral ligands plays a very important role in controlling both the yields and enantiofacial selectivity of the Henry products.  相似文献   

19.
Binaphthyldiamino salen-type Zn, Cu, and Co complexes can efficiently catalyze reactions of epoxides with carbon dioxide in the presence of various catalytic amounts of organic bases. The simplest binaphthyldiamino salen-type Zn complex gave the five-membered cyclic carbonate 2 in excellent yield in the presence of triethylamine. A Lewis acid and Lewis base cocatalyzed mechanism is proposed.  相似文献   

20.
Salen metal complexes incorporating two chiral BINOL moieties have been synthesized and characterized by X-ray crystallography. The X-ray structures show that this new class of Ni-BINOL-salen catalysts contains an unoccupied apical site for potential coordination of an electrophile and naphthoxides that are independent from the Lewis acid center. These characteristics allow independent alteration of the Lewis acidic and Br?nsted basic sites. These unique complexes have been shown to catalyze the Michael reaction of dibenzyl malonate and cyclohexenone with good selectivity (up to 90% ee) and moderate yield (up to 79% yield). These catalysts are also effective in the Michael reaction between other enones and malonates. Kinetic data show that the reaction is first order in the Ni*Cs-BINOL-salen catalyst. Further experiments probed the reactivity of the individual Lewis acid and Br?nsted base components of the catalyst and established that both moieties are essential for asymmetric catalysis. All told, the data support a bifunctional activation pathway in which the apical Ni site of the Ni*Cs-BINOL-salen activates the enone and the naphthoxide base activates the malonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号