首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The photoradical polymerization of methyl methacrylate (MMA) was performed at room temperature using (2RS,2’RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator and 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator in the presence of (η6-benzene)(η5-cyclopentadienyl)FeII hexafluorophosphate (BzCpFeII). The bulk polymerization provided narrower molecular weight distributions (Mw/Mn = 1.4 − 1.5) than the solution polymerization in acetonitrile, although BzCpFeII was insoluble in MMA. The polymerization rate was retarded by an increase in the amount of BzCpFeII. BzCpFeII, which had no ability to control the molecular weight by itself, could control it through the interaction with MTEMPO. The interaction of BzCpFeII and MTEMPO was attributed to the electron transfer involving the MTEMPO–aminoxy anion redox system and the iron redox system. The polymerization was confirmed to occur in accordance with a living mechanism because linear correlations were obtained for both the plots of the first order time–conversion and the conversion–molecular weight.  相似文献   

2.
The photo-controlled/living radical polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA) was attained using 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl as the mediator and (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) (r-AMDV) as the initiator. The bulk polymerization of DMAEMA produced a polymer with a comparatively narrow molecular weight distribution below 1.6. The first-order time conversion plots showed a linear increase. The molecular weight of the resulting polymer also increased with an increase in the monomer conversion. The molecular weights of the resulting polymers were in good agreement with the theoretical molecular weights. A linear correlation was also obtained for the plots of the molecular weight vs. the reciprocal of the initial concentration of r-AMDV. The GPC analysis demonstrated the living nature of the polymerization based on the fact that the curves were shifted to the higher molecular weight side without deactivation as the conversion increased.  相似文献   

3.
The photo-controlled/living radical polymerization of methyl methacrylate using a nitroxide mediator was established in an inert atmosphere. The bulk polymerization was performed at room temperature using 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl as the mediator and (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator in the presence of (4-tert-butylphenyl)diphenylsulfonium triflate as the accelerator by irradiation with a high-pressure mercury lamp. The photopolymerization in a N2 atmosphere produced a polymer with a comparatively narrow molecular weight distribution; however, the experimental molecular weight was slightly different from the theoretical molecular weight. The Ar atmospheric polymerization also provided a polymer with the molecular weight distribution similar to that of the polymer obtained by the N2 atmospheric polymerization. These inert atmospheric polymerizations more rapidly proceeded to produce polymers with narrower molecular weight distributions than the vacuum polymerization. The livingness of the Ar atmospheric polymerization was confirmed on the basis of the first-order time–conversion plots and conversion–molecular weight plots.  相似文献   

4.
The nitroxide-mediated photo dispersion polymerization of methyl methacrylate (MMA) was performed by irradiation at room temperature using (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator, 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator, (4-tert-butylphenyl)-diphenylsulfonium triflate as the photo-acid generator, and polyvinylpyrrolidone (PVP) as the surfactant in a mixed solvent of methanol/water = 3/1 (v/v). The MTEMPO-mediated photo dispersion polymerization produced spherical particles of PMMA, while the uncontrolled photo dispersion polymerization without MTEMPO provided nonspherical particles. The size distribution of the spherical particles decreased as the PVP concentration increased. The spherical particles showed a comparatively narrow molecular weight distribution of ca. 1.6. The livingness of the polymerization was confirmed on the basis of the linear correlations of the first-order time–conversion plots and conversion–molecular weight plots. The simultaneous control of the size distribution and molecular weight was possible as long as the light penetrates into the particles.  相似文献   

5.
The photo-living radical polymerization of methyl methacrylate (MMA) was performed at room temperature using (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) (r-AMDV) as the initiator, 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator, and (4-tert-butylphenyl)diphenylsulfonium triflate ( t BuS) as the photo-acid generator. The livingness of the polymerization was confirmed on the basis of linear increases in the ln([MMA]0/[MMA]t) vs. time and in the molecular weight vs. the conversion. The molecular weight distributions of the resulting polymers were around 1.45. The polymerization rate was dependent both on the t BuS/MTEMPO and MTEMPO/r-AMDV molar ratios. Furthermore, it was found that the polymerization had a photo-latency because the polymerization was retarded by the interruption of the irradiation; however, it was accelerated again by further irradiation without deactivation of the growing polymer chain ends.  相似文献   

6.
The photo-controlled/living radical polymerization of tert-butyl methacrylate was performed using a (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) initiator and a 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) mediator in the presence of a (4-tert-butylphenyl)diphenylsulfonium triflate photo-acid generator. The bulk polymerization was carried out at 25 °C by irradiation with a high-pressure mercury lamp. Whereas the polymerization in the absence of MTEMPO produced a broad molecular weight distribution, the MTEMPO-mediated polymerization provided a polymer with a comparatively narrow molecular weight distribution around 1.4 without elimination of the tert-butyl groups. The living nature of the polymerization was confirmed on the basis of the linear correlations for the first-order time–conversion plots and conversion–molecular weight plots in the range below 50% conversion. The block copolymerization with methyl methacrylate also supported the livingness of the polymerization based on no deactivation of the prepolymer.  相似文献   

7.
The stability of the growing polymer chain ends for the nitroxide-mediated photo-living radical polymerization of methyl methacrylate (MMA) was explored through block copolymerization with isopropyl methacrylate ( i PMA). The block copolymerization of i PMA was performed with the PMMA prepolymer prepared by the photopolymerization of MMA using the racemic-(2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) (r-AMDV) as the initiator, 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator, and (4-tert-butylphenyl)-diphenylsulfonium triflate ( t BuS) as the photo-acid generator. When the polymerization of MMA was carried out for 6.5 h, the resulting block copolymer showed a bimodal GPC due to the deactivation of part of the growing chain ends of the prepolymer. On the other hand, when the MMA polymerization was shortened to 5 h, the unimodal block copolymer was obtained without deactivation of the prepolymer.  相似文献   

8.
The novel photo-living radical polymerization of methyl methacrylate (MMA) was determined using 2,2’-azobis(4-methoxy-2,4-dimethylvaleronitrile) (AMDV) and 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) in the presence of bis(alkylphenyl)iodonium hexafluorophosphate (BAI). The polymerization provided a comparatively narrow molecular weight distribution in the range of 1.4–1.7. The resulting PMMA contained no BAI fragments in its structure and had the 1-cyano-1,3-dimethyl-3-methoxybutyl radical and MTEMPO at the 1:1 molar ratio. The experimental molecular weight was in close agreement with the theoretical one when the initiator efficiency was taken into consideration. The plots of ln([MMA]0/[MMA]) vs. time and the molecular weight of PMMA vs. the conversion and vs. the reciprocal of the initial concentration of AMDV showed linear correlations, indicating that the polymerization proceeded in accordance with a living mechanism. It was found that the polymerization had a photo-switching ability, because the polymerization was interrupted by turning off the irradiation, and then restarted by the irradiation again.  相似文献   

9.
The novel photo-living radical polymerization was determined using 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) and bis(alkylphenyl)iodonium hexafluorophosphate (BAI) as the photo-acid generator. The polymerization of methyl methacrylate was performed using azobisisobutylonitrile as an initiator in the presence of MTEMPO and BAI at room temperature by irradiation with a high-pressure mercury lamp to produce poly(methyl methacrylate) with a comparatively narrow molecular weight distribution (M w/M n?=?1.3–1.7). The polymerization proceeded by a living mechanism based on the fact that the first-order time-conversion plots linearly increased. A linear increase in the plots of the molecular weight versus the conversion also supported the living nature of the polymerization. It was found that MTEMPO had an interaction with the propagation chain end to control the molecular weight, while BAI weakened the interaction of MTEMPO with the propagation chain end to reduce the molecular weight distribution and polymerization time.  相似文献   

10.
A novel heterodinuclear catalyst, ethylene bridged samarocene and titanocene chloride (Sm-Ti), was used both as a single component catalyst (cat.) and also by activation with triisobutyl aluminum (TIBA) to polymerize methyl methacrylate (MMA). The binary catalyst demonstrated higher activity than the single component, but the molecular weight of the resultant PMMA is lower. Ultrahigh molecular weight PMMA (1.5×106) was obtained at an attractive conversion (87%) without any cocatalyst. The effects of polymerization parameters, such as temperature, time, molar ratios of Al(i-Bu)3/cat. and MMA/cat., were studied in detail. The results showed that the catalytic activity had a rather different dependence on the polymerization temperature with/without TIBA. High molecular weight PMMA was much more easily prepared in a bulk system than in toluene solution. The polymer yielded with about 65% syndiotacticity by 1H NMR and 75% by IR spectroscopy, but its stereoregularity did not change too much with polymerization temperature and the concentration of TIBA.  相似文献   

11.
The nitroxide-mediated photo-controlled/living radical polymerization of ethyl acrylate was attained using (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator, 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl as the mediator, and (4-tert-butylphenyl)diphenylsulfonium triflate as the photo-acid generator. The photopolymerization was performed in acetonitrile at room temperature by irradiation with a high-pressure mercury lamp. The molecular weight distribution of the resulting polymer decreased as the monomer concentration decreased. It was confirmed that the polymerization was controlled on the basis of the linear correlations for the first-order time-conversion plots and the plots of the molecular weight vs. the reciprocal of the initial concentration of the initiator, although the conversion–molecular weight plots did not show a completely linear correlation. The block copolymerization with methyl methacrylate accompanied by no deactivation of the growing polymer chain end supported the livingness of the polymerization.  相似文献   

12.
Polystyrene-graft-poly(methyl methacrylate) (PSt-graft-PMMA) was prepared by the nitroxide-mediated photo-living radical polymerization using poly(4-vinylbenzyl-4-oxy-2,2,6,6-tetramethylpiperidine-1-oxyl-ran-styrene) (P(VTEMPO-r-St)) as the macromediator. The bulk polymerization of methyl methacrylate was performed at room temperature by irradiation using a high-pressure mercury lamp with P(VTEMPO-r-St) as the mediator having the molar ratio of VTEMPO/St unit = 0.40/0.60 and the molecular weight of Mn = 21,700 and the (2RS,2′RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator in the presence of the (4-tert-butylphenyl)diphenylsulfonium triflate as the photo-acid generator. The polymerization proceeded via a controlled polymerization mechanism because both the first-order time-conversion plots and the conversion-molecular weight plots showed linear increases. It was found that all the VTEMPO units supported the controlled PMMA chains by 1H NMR analysis because the molar ratio of the VTEMPO at the terminal chain end to the 1-cyano-3-methoxy-1,3-dimethylbutyl group at the initiation chain end of the PMMA was unity.  相似文献   

13.
The polymerization of vinyl monomer initiated by poly-p-vinylphenol (PVPh) in NaOH aqueous solution was carried out at 85°C with shaking. Methyl methacrylate (MMA) was polymerized, whereas styrene and acrylonitrile were not. PVPh, which is dissociated into phenolate form (PVPh?Na+) in NaOH aqueous solution, was effective for the polymerization. The effects of the amounts of MMA, PVPh, NaOH, and H2O on the conversion of MMA were studied. The rate of polymerization of MMA increased with an increase in the molecular weight of PVPh-Na. The overall activation energy was estimated as 54 kJ mol?1. The polymerization proceeded through a radical mechanism. The addition of tetra-n-butylammonium bromide increased the rate of polymerization.  相似文献   

14.
New graft copolymers of β‐pinene with methyl methacrylate (MMA) or butyl acrylate (BA) were synthesized by the combination of living cationic polymerization and atom transfer radical polymerization (ATRP). β‐Pinene polymers with predetermined molecular weights and narrow molecular weight distributions (MWDs) were prepared by living cationic polymerization with the 1‐phenylethyl chloride/TiCl4/Ti(OiPr)4/nBu4NCl initiating system, and the resultant polymers were brominated quantitatively by N‐bromosuccinamide in the presence of azobisisobutyronitrile, yielding poly(β‐pinene) macroinitiators with different bromine contents (Br/β‐pinene unit molar ratio = 1.0 and 0.5 for macroinitiators a and b , respectively). The macroinitiators, in conjunction with CuBr and 2,2′‐bipyridine, were used to initiate ATRP of BA or MMA. With macroinitiator a or b , the bulk polymerization of BA induced a linear first‐order kinetic plot and gave graft copolymers with controlled molecular weights and MWDs; this indicated the living nature of these polymerizations. The bulk polymerization of MMA initiated with macroinitiator a was completed instantaneously and induced insoluble gel products. However, the controlled polymerization of MMA was achieved with macroinitiator b in toluene and resulted in the desired graft copolymers with controlled molecular weights and MWDs. The structures of the obtained graft copolymers of β‐pinene with (methyl)methacrylate were confirmed by 1H NMR spectra. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1237–1242, 2003  相似文献   

15.
This article deals that the rare earth metal complexes along with Al(i'-Bu),can catalyze the polymerization of methyl-methacrylate (MMA) into high molecular weight poly(MMA) along with narrow molecular weight distributions (MWD).A typical example was mentioned in the case of {Cp(Cl) Sm-Schiff-base(THF)} which expresses maximum (conv.% = 55.46 and Mn=354×103) efficiency along with narrow MWD (Mw/Mn<2) at 60℃.The resulting polymer was partially syndiotactic (>60%).The effect of the catalyst,temperature,catalyst/MMA molar ratio,catalyst/Al( i-Bu)3 molar ratio on the polymerization of MMA at 60℃ were also investigated.  相似文献   

16.
Methyl methacrylate (MMA) and styrene (St) have been radically polymerized in the presence of chlorotrimethylsilane and CuCl/N,N,N′,N″,N″-pentamethyldiethyltriamine (Me3SiCl/CuCl/PMDETA). An analysis of the resultant polymers by 1H NMR discloses terminal silyl group and chlorine atom in all the obtained polymers. Kinetics studies have been carried out by measuring monomer conversions and polymer molecular weights against polymerization time. The results indicate that, for both MMA and St polymerizations, the monomer conversions exhibit a quasi-linear relationship with polymerization time, and the polymer number-average molecular weight (Mn) also increases with monomer conversion. The molecular weights of both PS and PMMA exceed one hundred thousand. Regardless of molecular weight, all the polymers show narrow molecular distributions (Mw/Mn = 1.2-1.5). These polymerization reactions are speculated to follow a mechanism similar to that of atom transfer radical polymerization (ATRP).  相似文献   

17.
梁建国  韩丙勇 《化学学报》2006,64(7):701-704
采用苯氧铜/正丁基锂(PhOCu/n-BuLi)体系引发MMA聚合, 通过GPC, 1H NMR对聚合物进行了表征. 实验结果表明, 该体系聚合反应速度较快, 温度、引发体系组成是影响聚合物分子量及其分布、单体转化率、引发剂引发效率、聚合物的立构规整性的主要因素; -40 ℃时分子量分布比较窄, 但引发效率也比较低(大约15%). 低引发效率、宽分子量分布与引发剂的聚集状态有关. 分子量与单体浓度、引发剂浓度的关系说明, 该体系具有一定程度的活性聚合特点.  相似文献   

18.
The synthesis of a poly(methyl methacrylate)-block-poly(tetrahydrofuran) (PMMA-b-PTHF) diblock copolymer was attained by the photo-living radical polymerization of methyl methacrylate using 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) supported on the chain end of poly(tetrahydrofuran) (PTHF) as the macromediator. The polymerization was performed at room temperature by 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile) as an initiator in the presence of bis(alkylphenyl)iodonium hexafluorophosphate as a photo-acid generator to produce the diblock copolymer consisting of poly(methyl methacrylate) (PMMA) and PTHF blocks connected through the TEMPO. The polymerization was confirmed to proceed in accordance with a living mechanism based on linear correlations for three different plots of the first order time-conversion, the molecular weight of the copolymer versus the monomer conversion, and the molecular weight versus the reciprocal of the initial concentration of the initiator. The molecular weight distribution of the block copolymer was dependent on the molecular weight of the macromediator based on the miscibility of PMMA and PTHF.  相似文献   

19.
The photoradical polymerization of vinyl acetate was performed using 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator in the presence of bis(alkylphenyl)iodonium hexafluorophosphate (BAI). The MTEMPO/BAI system using 2,2’-azobis(isobutyronitrile) or 2,2’-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator did not succeed in controlling the molecular weight and produced polymers that showed a bimodal gel permeation chromatography with the broad molecular weight distribution. On the other hand, the polymerization using 1-(cyano-1-methylethoxy)-4-methoxy-2,2,6,6-tetramethylpiperidine and BAI proceeded by the living mechanism based on linear increases in the first order time–conversion and conversion–molecular weight plots. The molecular weight distribution also increased with the increasing conversion due to cloudiness of the solution as the polymerization proceeded. It was found that the polymerization had a photolatency because the propagation stopped by interruption of the irradiation and was restarted by further irradiation.  相似文献   

20.
The photoradical polymerization of vinyl acetate was performed using 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator in the presence of bis(alkylphenyl)iodonium hexafluorophosphate (BAI). The MTEMPO/BAI system using 2,2’-azobis(isobutyronitrile) or 2,2’-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator did not succeed in controlling the molecular weight and produced polymers that showed a bimodal gel permeation chromatography with the broad molecular weight distribution. On the other hand, the polymerization using 1-(cyano-1-methylethoxy)-4-methoxy-2,2,6,6-tetramethylpiperidine and BAI proceeded by the living mechanism based on linear increases in the first order time–conversion and conversion–molecular weight plots. The molecular weight distribution also increased with the increasing conversion due to cloudiness of the solution as the polymerization proceeded. It was found that the polymerization had a photolatency because the propagation stopped by interruption of the irradiation and was restarted by further irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号