首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 Core–shell latex particles made of a poly(butyl methacrylate) (PBMA) core and a thin polypyrrole (PPy) shell were synthesized by two-stage polymerization. In the first stage, PBMA latex particles were synthesized in a semicontinuous process by free-radical polymerization. PBMA latex particles were labeled either with an energy donor or with an energy acceptor, in two different syntheses. These particles were used in a second stage as seeds for the synthesis of the core–shell particles. The PPy shell was polymerized around the PBMA core latex in an oxidative chemical in situ polymerization. Proofs for the success of the core–shell synthesis were obtained using nonradiative energy transfer (NRET) and atomic force microscopy (AFM). NRET gives access to the rate of polymer chain migration between adjacent particles in a film annealed at a temperature above the glass-transition temperature T g of the particles. Slower chain migration of the PBMA polymer chains was obtained with the PBMA–PPy core–shell particles compared to rate of the PBMA polymer chain migration found with the pure, uncoated PBMA particles. This result is due to the coating of PBMA by PPy, which hinders the migration of the PBMA polymer chains between adjacent particles in the film. This observation has been confirmed by AFM measurements showing that the flattening of the latex film surface is much slower for the core–shell particles than for the pure PBMA particles. This result can again be explained by the presence of a rigid PPy shell around the PBMA core. Thus, these two complementary methods have given evidence that real core–shell particles were synthesized and that the shell seriously hinders film formation of the particles in spite of the fact that it is very thin (thickness close to 1 nm) compared to the size (750 and 780 nm in diameter) of the PBMA core. Transparency measurements confirm the results obtained by NRET and AFM. When the films are placed at a temperature higher than the T g of PBMA, the increase in transparency is faster for films made with the uncoated PBMA particles than for films made with the coated PBMA particles. This result indicates again that the presence of the rigid PPy layer around the PBMA core reduces considerably the speed at which the structure of the film is modified when heated above the T g of PBMA. Received: 02 September 1999 Accepted: 21 December 1999  相似文献   

2.
Optical properties for immiscible polymer blends composed of poly(methyl methacrylate), PMMA, and ethylene–vinyl acetate copolymer (EVA) are studied employing various EVA samples with different vinyl acetate contents. PMMA/EVA shows transparency at room temperature when the difference in refractive index between both phases is small. The light transmittance, however, decreases with increasing the ambient temperature. This phenomenon is attributed to the difference in the volume expansion ratio, leading to the difference in refractive index, between PMMA and EVA. It is found that addition of tricresyl phosphate, TCP, improves the transparency and its temperature dependence. As a result, a ternary PMMA/EVA/TCP blend shows high level of transparency in the wide temperature range, although it has apparent phase separated morphology.  相似文献   

3.
《Fluid Phase Equilibria》1999,157(2):285-297
Cloud-point data for the system poly(methyl methacrylate) (PMMA)–CO2–methyl methacrylate (MMA) are measured in the temperature range of 26 to 170°C, to pressures as high as 2500 bar, and with cosolvent concentrations of 10.4, 28.9, and 48.4 wt.%. PMMA does not dissolve in pure CO2 to 255°C and 2550 bar. The cloud-point curve for the PMMA–CO2–10.4 wt.% MMA system exhibits a negative slope that reaches 2500 bar at 105°C. With 28.9 wt.% MMA the cloud-point curve remains relatively flat at ∼900 bar for temperatures between 25 and 170°C. With 48.4 wt.% MMA the cloud-point curve exhibits a positive slope that extends to 20°C and ∼100 bar. Pressure-composition isotherms are also reported for the CO2–MMA system at 40.0, 80.0, 105.5°C. This system exhibits type-I phase behavior with a continuous mixture–critical curve. The Peng–Robinson (PR) and SAFT equations of state model the CO2–MMA data reasonably well without any binary interaction parameters, although the PR equation provides a better representation of the mixture-critical region. It is not possible to obtain even a qualitative fit of the PMMA–MMA–CO2 data with the SAFT equation of state. The SAFT model qualitatively shows that the cloud-point pressure decreases with increasing MMA concentration and that the cloud-point curve exhibits a positive slope for very high concentrations of MMA in solution.  相似文献   

4.
Thermal properties of γ-Fe2O3/poly(methyl methacrylate) (PMMA) core/shell particles with an average core size of 4 nm were studied through measurements of thermogravimetry, powder X-ray diffraction and magnetization. The thermal degradation of the PMMA shell in the air was found to occur at temperatures lower by about 60 °C than that of free PMMA. Random scission of the PMMA chains seemed to be catalyzed by the core oxide. The γ-Fe2O3 to α-Fe2O3 structural transformation took place at different temperatures depending upon the shell material. Namely, α-Fe2O3 was the only product for the caprylate-capped γ-Fe2O3 nanoparticles treated at 400 °C, whereas γ-Fe2O3 still remained for the γ-Fe2O3/PMMA composite treated at 500 °C. It is possible that some species containing silicon of the polymerization initiator origin were formed on the surface and prevented interparticle atomic diffusions needed for the γα transformation.  相似文献   

5.
In the present investigation, the novel copper Schiff base complex was synthesized and its catalytic activity was evaluated for the ring-opening polymerization (ROP) of lactide and block polymerization of poly(lactide) with poly(ethylene glycol)methyl ether.  相似文献   

6.
Thermodegradative investigations of two classes of multi-block copolymers containing poly(D,L-lactic-glycolic acid) (PLGA) and either poly(ethylene glycol) (PEG) or poly(ϵ-caprolactone) diol-terminated (PCDT) segments were performed. In particular, the influence of the type and length of the segments as well as of the molar ratio between the D,L-lactic acid (LA) and glycolic acid (GA) residues was investigated at 180°C in air by viscometry, FT-IR analysis and isothermal thermogravimetry. The thermal oxidative degradation of these materials is largely affected by the LA/GA ratio, a higher LA content generally imparting higher stability. The FT-IR analysis suggests that, depending on the composition of the PLGA segments, degradative processes are triggered which can lead to a preferential degradation of the blocks.  相似文献   

7.
8.
Supercooling of micro- and nanoencapsulated phase change material is widely observed as their diameters depress to a limitation upon cooling. The aim of this study is to suppress the supercooling of nanoencapsulated n-octadecane (NanoC18) using a novel copolymer consisting of long n-alkyl side chains as shell. Nanoencapsulations of n-octadecane with various compositions of poly(methyl methacrylate-co-octadecyl methacrylate) copolymer as shells were carried out by means of miniemulsion polymerization. Fabrication, morphology, diameter distributions, phase change behaviours, and thermal stabilities of nanocapsules were investigated using Fourier transformed infrared spectroscopy, a field-emission scanning electron microscope, a transmission electron microscope, particle size distribution analysis, differential scanning calorimetry, and thermogravimetric analysis. The results indicate that a series of nanocapsules with core/shell structure and spherical shapes are fabricated with average diameters ranging from 373 to 398 nm. The average thickness of the shells is about 60 nm. All the NanoC18 crystallize into a stable triclinic phase via a metastable rotator phase (RI) from the liquid phase. The crystallization temperature of n-octadecane within poly(methyl methacrylate) nanocapsules is considerably lower than that in bulk phase. Supercooling is effectively suppressed using the comb-like copolymer with crystallizable n-octadecyl side chains as shell. Octadecyl methacrylate is not only employed as a reactive costabilizer to suppress the influence of Ostwald ripening during the formation of nanocapsules but also as a functional monomer in the composition of the copolymer shell in order to suppress the supercooling of NanoC18.  相似文献   

9.
This paper presents a computational study on the formation of a molecular necklace formed by specific threading of cyclodextrins (CDs) on block copolymers. Structural as well as energetic principles for the selective complexation of - and -cyclodextrin with poly(ethylene oxide)–poly(propylene oxide) block copolymers (PEO–PPO) are elucidated considering a diblock copolymer of equimolecular composition (PEO)4–(PPO)4 as guest. A non-statistical distribution of CDs, i.e. -CDs primarily located on the PEO chain and -CDs on PPO blocks of the polymer, is based on a variety of structural features and energetic preferences considering both potential as well as solvation energies. This selectivity becomes already obvious considering 1:1 complexes between PEO and PPO monomers and the two CDs, but is increasingly evident when calculating higher order ensembles. Besides the host–guest interaction, docking between CDs themselves is an important, also non-statistical, prerequisite for the self-assembly of highly ordered tubes. The formation of intermolecular hydrogen bonds between adjacent CDs in a tubular aggregate gives an important contribution to the overall stability of the molecular necklace. The net effect, based on the preferential interaction between host and guest as well as between the host molecules themselves, results in the formation of a stable, highly ordered macromolecular, multicomponent aggregate.  相似文献   

10.
Interpolyelectrolyte complex (IPEC) dispersions were prepared from chitosan and poly(sodium acrylate), NaPMA, by mixing their solutions, at different carboxyl-to-aminium molar ratios, rCA. Gyration radius was determined by small angle x-ray scattering (SAXS) and showed that, as rCA was increased, IPEC dimensions decreased and reached a minimum at rCA?=?0.75, which was considered the ratio at which IPEC cluster dimensions were minimum, following collapse, phase segregation, nucleation, and growth of larger particles. Pair distance distributions, P(r), became narrower up to rCA?=?0.75, increasing its width from this point. Relaxation-related parameters from dynamic light scattering (DLS) intensity correlation functions (ICFs) identified three main relaxation processes. The fast process, related to free polyelectrolyte molecules random motion disappeared as rCA, was increased. The other two relaxation processes also were a function of rCA and presented marked changes at rCA?=?0.75. At the same value of rCA, the energy of activation for the average relaxation rate showed the occurrence of a clear change in the nature of IPEC-related interactions. As hydrodynamic diameter, determined by DLS, was much larger than the gyration radius determined by SAXS, IPEC particles could be described as being composed by a core, rich in segregated, insoluble material, enveloped by IPEC soluble clusters, possibly in the form of water-rich gels.  相似文献   

11.
12.
The aim of this study was to obtain a hybrid material based on a polymer photonic crystal core and inorganic ZnO shell with potential applications in optoelectronic devices or photocatalysts. For this reason, ZnO particles were obtained both in the absence and presence of ST–AA particles using a chemical reduction method for metal salts. The inhibited growth mechanism of inorganic particles generated in the presence of polymer latex was noticed. The products were characterized by SEM, EDX, TEM, DLS, and UV–vis.  相似文献   

13.
Molecular dynamics calculations of an amorphous interfacial system of poly(methyl methacrylate) (PMMA) and poly(tetrafluoroethylene) (PTFE) containing about 10,000 interaction sites were performed for 15 ns under constant pressure and constant temperature conditions. The time evolutions of the thickness, density and number of atomic pairs in the interfaces suggested that the interfaces reached their equilibrium states with an interfacial thickness of about 2 nm at 500 K. The molecular motion in the interface and bulk was compared using mean square displacement and torsional autocorrelation function. The separation at a PMMA/PTFE interface was mimicked using non-equilibrium molecular dynamics calculations by applying the potential energy to the MD cell in a direction perpendicular to the interface. Initially, the PTFE layer close to the interface was deformed, and before complete separation, some segments of the PTFE molecules extended from the bulk to the surface of the PMMA layer, which were attached by the intermolecular interaction. The remaining PTFE molecules were entangled in the bulk, which probably prevented the transfer of the PTFE molecules to the surfaces of the PMMA layers. On the other hand, the PMMA layer was only slightly deformed. This separation behavior can be explained by taking into account the intermolecular interaction, the barrier to the conformational changes of the backbones and the entanglement of the PTFE molecules in the bulk.  相似文献   

14.
15.
Stable emulsions of a core–shell acrylic copolymer (non-crosslinkable V0, and crosslinkable V2, V4, V6, and V8, where the numbers indicate the wt% of crosslinking agent based on the total acrylate monomer content) containing butyl acrylate (BA, 45 wt%), glycidyl methacrylate (GMA, 45 wt%), heptadecafluorodecyl methacrylate (PFA, 10 wt%), and various contents of crosslinking agent (vinyltriethoxysilane, VTES) were synthesized using a three-stage seeded emulsion polymerization process with a small amount of surfactant. The average particle size and viscosity of emulsions increased significantly with increasing VTES content. This study examined the effects of the VTES content on the surface/mechanical properties of self-crosslinked copolymer film samples containing a fixed acrylate monomer content to find the optimum VTES content. XPS showed that the film–air surface of the copolymer samples had a higher fluorine/silicone content than the film–dish interface. The tensile strength/modulus, thermal stability, and two Tgs (α and β Tgs) of the film samples increased significantly with increasing VTES content. The contact angle of the film samples increased with increasing VTES content up to approximately 6 wt%, and then decreased slightly. The optimum VTES content was approximately 6 wt% based on the total acrylate monomer content to obtain a high water/oil repellent coating material (V6) with the highest water/methylene iodide-contact angles (118.2°/81.8°) and lowest surface energy (18.4 mN/m).  相似文献   

16.
Thermoreversible networks obtained by the Diels–Alder cycloaddition reaction of poly(vinyl furfural) with urethane bismaleimides containing polyether chain were synthesized. The formation of the networks was confirmed by attenuated total reflectance in conjunction with Fourier transform infrared spectroscopy (ATR–FTIR). The materials thermal properties were investigated using differential scanning calorimetry (DSC) and a coupling of dynamic thermogravimetry with Fourier transform infrared spectroscopy and mass spectrometry (TG–FTIR–MS) for pyrolysis behaviour under nitrogen atmosphere. A thermal decomposition mechanism of the networks and poly(vinyl furfural) was discussed via evolved gas analysis. The thermoreversibility of the networks was demonstrated by the presence of the endothermic peak characteristic to the retrodienic process on the DSC heating curves and also the appearance of the exothermic peak, due to the dienic process, on the DSC cooling curve. The dynamic contact angle and free surface energy values of the networks were determined. Measures of the heterogeneity and roughness of the surfaces suggested that the surfaces of the networks’ films are more homogenous than the initial poly(vinyl furfural) surface. Dynamic water vapour sorption studies were conducted.  相似文献   

17.

Miscibility characteristics of poly[2‐hydroxyethylmethacrylate] (PHEMA) and poly[ethylene oxide] (PEO) have been investigated by solution viscometry, ultrasonic and differential scanning calorimetric (DSC) methods. The interaction parameters were obtained using the viscosity data. Ultrasonic velocity and adiabatic compressibility vs. blend composition have been plotted and are found to be linear. A single glass transition temperature was observed by differential scanning calorimetry. Variation of glass transition temperature (Tg) with composition follows Garden‐Taylor equation. Tg values have also been calculated from the Fox equation. The results obtained reveal that PHEMA forms a miscible blend with PEO in the entire composition range.  相似文献   

18.
The products of degradation of blends of poly(2,3-dibromopropyl methacrylate) and poly(2,3-dibromopropyl acrylate) with poly(methyl methacrylate) and poly(methyl acrylate) are predominantly those to be expected from the degradation of the individual polymers. However, the appearance of methyl bromide and methanol from all four blends indicates that some interaction does occur across the phase boundary between the two constituent polymers. This is presumed to consist of the reaction of hydrogen bromide, formed by decomposition of the brominated polymers with the methyl groups of the acrylate and methacrylate polymers.  相似文献   

19.
Poly(?-caprolactone)-b-poly(ethylene glycol)-b-poly(?-caprolactone) (PCL-b-PEG-b-PCL) triblock copolymer were synthesized by mean anionic activation of the hydroxyl end groups of poly(ethylene glycol) in presence of diphenylmethylsodium. Copolymers were characterized by SEC, FT-IR and 1H-NMR spectroscopy, TGA and DSC. Size exclusion chromatographic analysis of obtained copolymers indicated incorporation of CL monomer into PEG without formation of PCL homopolymer. Characterization by FT-IR and 1H NMR spectroscopy of the resulting polymeric products, with respect to their structure, end-groups and composition, showed that they are best described as ester-ether-ester triblock copolymers, whose compositions can be adjusted changing the feeding molar ratio of PEG to CL. The thermal stability of triblock copolymers was less that PEG precursor, but higher that PCL homopolymer. Analysis by mean DSC showed that all copolymers were semi-crystalline and their thermal behavior depending on their composition.  相似文献   

20.
Shen  Qianqian  Qian  Kai  Guan  Rongfeng  Xue  Jinbo  Zhu  Liudong  Liu  Xuguang  Jia  Husheng  Hu  Lanqing  Xu  Bingshe 《Journal of Solid State Electrochemistry》2019,23(7):2085-2096
Journal of Solid State Electrochemistry - CdSe@CdS@TiO2 microsheet array (MSA) ternary core–shell heterojunctions were prepared by successive electrodeposition of CdS and CdSe onto TiO2...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号