首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The transient elongation behavior of entangled polymer and wormlike micelles (WLM) solutions has been investigated using capillary breakup extensional rheometry (CaBER). The transient force ratio X = 0.713 reveals the existence of an intermediate Newtonian thinning region for polystyrene and WLM solutions prior to the viscoelastic thinning. The exponential decay of X(t) in the first period of thinning defines an elongational relaxation time λ x which is equal to elongational relaxation time λ e obtained from exponential diameter decay D(t) indicating that the initial stress decay is controlled by the same molecular relaxation process as the strain hardening observed in the terminal regime of filament thinning. Deviations in true and apparent elongational viscosity are discussed in terms of X(t). A minimum Trouton ratio is observed which decreases exponentially with increasing polymer concentration leveling off at Trmin = 3 for the solutions exhibiting intermediate Newtonian thinning and Trmin ≈ 10 otherwise. The relaxation time ratio λ e/ λ s, where λ s is the terminal shear relaxation time, decreases exponentially with increasing polymer concentration and the data for all investigated solutions collapse onto a master curve irrespective of polymer molecular weight or solvent viscosity when plotted versus the reduced concentration c[ η], with [ η] being the intrinsic viscosity. This confirms the strong effect of the nonlinear deformation in CaBER experiments on entangled polymer solutions as suggested earlier. On the other hand, λ eλ s is found for all WLM solutions clearly indicating that these nonlinear deformations do not affect the capillary thinning process of these living polymer systems.  相似文献   

2.
Semi-dilute ( $c^\ast < c < c_{\rm e}$ ) as well as concentrated, entangled (c?>?c e) solutions of PEO yield uniformly thinning, cylindrical filaments in capillary breakup extensional rheometry (CaBER) experiments. Up to c?≈ c e thinning can be characterized by a single elongational relaxation time λ E. Comparison with the longest shear relaxation time, λ S reveals that λ E/λ S decreases with increasing concentration or molecular weight according to (c[η])???4/3. This is attributed to the large deformation the solutions experience during filament thinning. A factorable integral model including a single relaxation time and a Soskey or Wagner damping function accounting for the large deformation in CaBER experiments is used to calculate λ E/λ S and provides good agreement with experimental results. Irrespective of concentration or molecular weight a beads-on-a-string structure occurs prior to filament breakup at a diameter ratio D/D 0?≈ 0.01. This instability is supposed to be closely related to a flow-induced phase separation.  相似文献   

3.
The capillary breakup extensional rheometry (CaBER) is a versatile method to characterize the elongational behavior of low-viscosity fluids. Commonly, data evaluation is based on the assumption of zero normal stress in axial direction ( $\upsigma_{\rm zz}=0$ ). In this paper, we present a simple method to determine the axial force using a CaBER device rotated by 90° and analyzing the deflection of the filament due to gravity. Forces in the range of 0.1–1,000?μN could be assessed. Our study includes experimental investigations of Newtonian fructose solutions and silicon oil mixtures (viscosity range, 0.9–60?Pa s) and weakly viscoelastic polyethylene oxide (PEO, $M_{\rm w}=10^{6}$ ?g/mol) solutions covering a concentration range from c?≈?c* (critical overlap concentration) up to c?>?c e (entanglement concentration). Papageorgiou’s solution for the stress ratio $\upsigma_{\rm zz}/\upsigma_{\rm rr}$ in Newtonian fluids during capillary thinning is experimentally confirmed, but the widely accepted assumption of vanishing axial stress in weakly viscoelastic fluids is not fulfilled for PEO solutions, if c e is exceeded.  相似文献   

4.
The use of the stretched-exponential function to represent both the relaxation function g(t)=(G(t)-G )/(G 0-G ) and the retardation function r(t) = (J +t/η-J(t))/(J -J 0) of linear viscoelasticity for a given material is investigated. That is, if g(t) is given by exp (?(t/τ)β), can r(t) be represented as exp (?(t/λ)µ) for a linear viscoelastic fluid or solid? Here J(t) is the creep compliance, G(t) is the shear modulus, η is the viscosity (η?1 is finite for a fluid and zero for a solid), G is the equilibrium modulus G e for a solid or zero for a fluid, J is 1/G e for a solid or the steady-state recoverable compliance for a fluid, G 0= 1/J 0 is the instantaneous modulus, and t is the time. It is concluded that g(t) and r(t) cannot both exactly by stretched-exponential functions for a given material. Nevertheless, it is found that both g(t) and r(t) can be approximately represented by stretched-exponential functions for the special case of a fluid with exponents β=µ in the range 0.5 to 0.6, with the correspondence being very close with β=µ=0.5 and λ=2τ. Otherwise, the functions g(t) and r(t) differ, with the deviation being marked for solids. The possible application of a stretched-exponential to represent r(t) for a critical gel is discussed.  相似文献   

5.
We report on the interplay between creep and residual stresses in a carbopol microgel. When a constant shear stress σ is applied below the yield stress σ y, the strain is shown to increase as a power law of time, γ(t) = γ 0 + (t/τ) α , with an exponent α = 0.39 ± 0.04 that is strongly reminiscent of Andrade creep in hard solids. For applied shear stresses lower than some typical value σ c ? 0.2σ y, the microgel experiences a more complex, anomalous creep behavior, characterized by an initial decrease of the strain, that we attribute to the existence of residual stresses of the order of σ c that persist after a rest time under a zero shear rate following preshear. The influence of gel concentration on creep and residual stresses are investigated as well as possible aging effects. We discuss our results in light of previous works on colloidal glasses and other soft glassy systems.  相似文献   

6.
We investigate the linearized response of two elastic half-spaces sliding past one another with constant Coulomb friction to small three-dimensional perturbations. Starting with the assumption that friction always opposes slip velocity, we derive a set of linearized boundary conditions relating perturbations of shear traction to slip velocity. Friction introduces an effective viscosity transverse to the direction of the original sliding, but offers no additional resistance to slip aligned with the original sliding direction. The amplitude of transverse slip depends on a nondimensional parameter η=csτ0/μv0, where τ0 is the initial shear stress, 2v0 is the initial slip velocity, μ is the shear modulus, and cs is the shear wave speed. As η→0, the transverse shear traction becomes negligible, and we find an azimuthally symmetric Rayleigh wave trapped along the interface. As η→∞, the inplane and antiplane wavesystems frictionally couple into an interface wave with a velocity that is directionally dependent, increasing from the Rayleigh speed in the direction of initial sliding up to the shear wave speed in the transverse direction. Except in these frictional limits and the specialization to two-dimensional inplane geometry, the interface waves are dissipative. In addition to forward and backward propagating interface waves, we find that for η>1, a third solution to the dispersion relation appears, corresponding to a damped standing wave mode. For large-amplitude perturbations, the interface becomes isotropically dissipative. The behavior resembles the frictionless response in the extremely strong perturbation limit, except that the waves are damped. We extend the linearized analysis by presenting analytical solutions for the transient response of the medium to both line and point sources on the interface. The resulting self-similar slip pulses consist of the interface waves and head waves, and help explain the transmission of forces across fracture surfaces. Furthermore, we suggest that the η→∞ limit describes the sliding interface behind the crack edge for shear fracture problems in which the absolute level of sliding friction is much larger than any interfacial stress changes.  相似文献   

7.
This paper investigates the least time τ* of the first zero of the bounded solution to an initial boundary value problem for the heat equation. The heat equation is considered in the domain $$\left\{ {(x,t)| - \infty< x< s(t),0< t \leqslant T} \right\}$$ . The initial conditionu(x, 0)=φ(x) and the boundary conditionu x (s(t),t)=?R are specified. Let τ=τ(φ,R, s) denote the first zero ofu onx=s(t), that is,u(s(τ), τ)=0. Let τ*=min τ, where the minimum is taken over a class of functionss=s(t). The existence of τ* is demonstrated, and a generalization of the problem is discussed.  相似文献   

8.
We have investigated the effect of crosslink density on shear and elongational flow properties of alkali-swellable acrylic thickener solutions using a mixing series of the two commercial thickeners Sterocoll FD and Sterocoll D as model system. Linear viscoelastic moduli show a smooth transition from weakly elastic to gel-like behavior. Steady shear data are very well described by a single mode Giesekus model at all mixing ratios. Extensional flow behavior has been characterized using the CaBER technique. Corresponding decay of filament diameter is also well fitted by the Giesekus model, except for the highest crosslink densities, when filament deformation is highly non-uniform, but the non-linearity parameter α, which is independent of the mixing ratio, is two orders of magnitude higher in shear compared to elongational flow. Shear relaxation times increase by orders of magnitude, but the characteristic elongational relaxation time decreases weakly, as gel content increases. Accordingly, variation of gel content is a valuable tool to adjust the low shear viscosity in a wide range while keeping extensional flow resistance essentially constant.  相似文献   

9.
The creep experiment is analyzed using the rigid-dumbbell suspension model. It is found that the equilibrium shear compliance J e is given by $$J_e = \frac{{\theta _0 }}{{2\eta _0^2 }} + O(\kappa _\infty ^2 )$$ where η0 and θ0 are the viscosity and primary normal stress functions at zero-shear rate, and κ is the velocity gradient for large time. It is found that, to the lowest level of approximation, τ yy zz and τ xx yy have the same sign during the creep experiment.  相似文献   

10.
The consitutive equation derived in Part I [1] is used to compute steady-state and time-dependent material functions. A procedure is suggested for determining the four independent model parameters (λH, b, σ, β) from experimental data.Material functions have been calculated using parameters determined by experimental data for concentrated solutions of nearly monodisperse linear polymers. The theoretical curves for steady shear properties (η and Ψ1) are in quantitative agreement with the data well into the range of nonlinear behavior. The calculated time-dependent properties (η*, η+, Ψ+, η?) are in qualitative agreement with observed behavior. Theoretical curves for elongational viscosity are reasonable, but suitable experimental data are not available for comparison.  相似文献   

11.
Capillary viscometry was performed on dilute non-Newtonian solutions of monodisperse polystyrene in theta solvents. The solvents, blends of low-molecular-weight polystyrene with styrene, had viscosities (ηs) that were varied from 0.22–27 Pa s. Data reduction of the dilute limit, [η]/[η0] vs. β = [η0sMγ?/RT (where γ? is shear rate) revealed a parametric dependence on ηs that has not before been reported and is not predicted by most molecular theories of polymer dynamics. It is suggested that an internal viscosity model can explain such a phenomenon.  相似文献   

12.
Shear wave propagation causes microvibrations within a medium; measuring the wave attenuation coefficient, α, and phase velocity, c s , the medium shear modulus, μ, and shear viscosity, η, are determined based on a viscoelastic model that includes both c s and α. The present work compares the performances of nine processing methods, based on cross-correlation and quadrature demodulation, used to extract the motion waveform from a sequence of radio-frequency (RF) echo signals from the medium. Kalman filtering determined the amplitude and the phase of the extracted motion waveform. The comparisons were done with regard to computational simulation and experiments with a gel phantom. Estimates obtained for μ and η of the medium considered different conditions for the vibration amplitude and the signal-to-noise ratio (SNR) of the RF echo signals and the waveform extracted by means of single frequency and shear wave dispersion ultrasound vibration (SDUV) methods. According to the simulated results, the cross-correlation-based processing techniques are more precise and accurate in comparison to quadrature demodulation techniques. The results for c s , α, μ and η of the phantom and those obtained under the same setup conditions for experimental and computational tests agree with each other. Comparing the estimates based on single frequency and SDUV techniques, they presented similar performances at high SNR of the RF echo signal. On the other hand, the former technique prevailed for low SNR.  相似文献   

13.
14.
Viscoelastic solutions were ejected vertically downwards into air and various Newtonian fluids. The measured swell increased significantly when ejected into a liquid rather than air. The observed increase is considered a result of both bouyancy and drag forces on the solution. The following dimensions expression relating the ratio of the swell diameter in liquid and air DL/DA to the elastic shear compliance of the ejected solution Je was experimentally observed.(DL/DA)6-1=30(Δ?/?s)?12([g2η2N?s]13Je)35, where Δ? is the density difference between the extruded and Newtonian fluid, ?s is the solution density, g is the gravitational constant, and ηN is the Newtonian fluid viscosity. Thus with this expression a simple extrudate swell technique exists to estimate the elastic shear compliance of a viscoelastic solution.  相似文献   

15.
A macromolecular solution is represented by the simple model of rigid dumbbells suspended in a Newtonian fluid with Brownian motion included. Hydrodynamic interaction is not taken into account. It is found that for this model there will be recoil after the cessation of steady shearing flow. The ultimate shear recovery S is developed as a power series in κ?, the shear rate prior to the cessation of the steady shear flow: $$S_\infty = (\theta _0 /2\eta _0 ) \kappa ^\user1{ - } + O(\kappa ^\user1{ - } )^3$$ where η0 and θ0 values of the viscosity and primary normal stress functions respectively at zero-shear rate. The coefficient of the term in (κ?)3 is calculated. In addition, the behavior of the normal stresses during the recoil process is found; during recoil τ2233 has the opposite sign from τ1122.  相似文献   

16.
Considering a closed set M of some x-space and a solution x(t), y(t) of a differential system x = X(x, y, t), y = Y(x, y, t), we give sufficient conditions in order that x(t) approaches M. We use several auxiliary functions and employ Salvadori's method of a one parameter family of Liapunov functions. An application is given to the two-body problem in the presence of some friction forces and when the reference frame is non-inertial.  相似文献   

17.
Deductive similarity analysis is employed to study one-dimensional wave propagation in rate dependent materials whose constitutive laws are special cases of Maxwellian materials (σt = φ(ε, σ)εt + ψ(ε, σ), ε = strain, σ = stress). The general problem is shown not to have a similar solution although many special cases have the independent similar variable (x ? c)/(t ? d)e. These cases are studied and tabulated. Analytic similar solutions are presented for several cases and a discussion of permissable boundary conditions is given.  相似文献   

18.
A basic study of the mechanisms of necking and ductile failure of polymer melts in uniaxial elongational flow has been carried out. A linear stability analysis was carried out using a White—Metzner convected Maxwell model with a deformation-rate-dependent relaxation time, which varies according to τ = τo/(1 + aτo[2trd2]12). It was shown that filament stability and elongation to break depend upon τoE, where E is the elongation rate, and a. At fixed τoE, filament stability decreases with increasing a. At small a, stability increases with increasing τoE while for a > 1√3, stability decreases with increasing τoE. For a material with small a, ductile failure can occur for small τoE, but cohesive fracture should be the cause of failure at larger τoE. For a material with large a, however, ductile failure always dominates the failure mode. These results are used to interpret failure in elongational flow of low density and high density polyethylene and polypropylene melts and describe how the latter two melts exhibit ductile failure.  相似文献   

19.
Superposition of oscillatory shear imposed from the boundary and through pressure gradient oscillations and simple shear is investigated. The integral fluid with fading memory shows flow enhancement effects due to the nonlinear structure. Closed-form expressions for the change in the mass transport rate are given at the lowest significant order in the perturbation algorithm. The elasticity of the liquid plays as important a role in determining the enhancement as does the shear dependent viscosity. Coupling of shear thinning and elasticity may produce sharp increases in the flow rate. The interaction of oscillatory shear components may generate a steady flow, either longitudinal or orthogonal, resulting in increases in flow rates akin to resonance, and due to frequency cancellation, even in the absence of a mean gradient. An algorithm to determine the constitutive functions of the integral fluid of order three is outlined.Nomenclature A n Rivlin-Ericksen tensor of order . - A k Non-oscillatory component of the first order linear viscoelastic oscillatory velocity field induced by the kth wave in the pressure gradient - d Half the gap between the plates - e x, e z Unit vectors in the longitudinal and orthogonal directions, respectively - G(s) Relaxation modulus - G History of the deformation - Stress response functional - I() Enhancement defined as the ratio of the frequency dependent part of the discharge to the frequencyindependent part of it at the third order - I *() Enhancement defined as the ratio of the increase in discharge due to oscillations to the total discharge without the oscillations - k Power index in the relaxation modulus G(s) - k i –1 Relaxation times in the Maxwell representation of the quadratic shear relaxation modulus (s 1, s 2) - m i –1, n i –1 Relaxation times in the Maxwell representations of the constitutive functions 1(s 1,s 2,s 3) and 4 (s 1, s 2,s 3), respectively - P Constant longitudinal pressure gradient - p Pressure field - mx ,(3) nz ,(3) Mean volume transport rates at the third order in the longitudinal and orthogonal directions, respectively - 0,(3), 1,(3) Frequency independent and dependent volume transport rates, respectively, at the third order - s = t- Difference between present and past times t and   相似文献   

20.
Elongational stresses of dilute polymer solutions have been estimated by utilizing the flow through small orifices under the condition of no vortex upstream of the orifice plane. The flow was approximated with a linearly converging flow towards an apex of a cone, its validity being partially confirmed by the measured center velocities, and the elongational stresses are determined from the measured thrusts of dilute polymer solutions. On the other hand, elongational stresses were theoretically obtained with the modified Maxwell model and the second order fluid. A comparison was made between the experimental and the theoretical results and the following points were clarified; below an elongational rate of 2 × 104 s−1 the modified Maxwell model gives elongational stresses close to the experimentally determined ones, but above that elongational rate it deviates from the experimental results. The second order fluid is not sufficient to describe the stresses in this kind of elongational flow and an acceleration term such as δ2eijt2 may be necessary in this case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号