首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A first principles-based mean field model was developed for the oxygen reduction reaction (ORR) taking account of the coverage- and material-dependent reversible potentials of the elementary steps. This model was applied to the simulation of single crystal surfaces of Pt, Pt alloy and Pt core-shell catalysts under Ar and O(2) atmospheres. The results are consistent with those shown by past experimental and theoretical studies on surface coverages under Ar atmosphere, the shape of the current-voltage curve for the ORR on Pt(111) and the material-dependence of the ORR activity. This model suggests that the oxygen associative pathway including HO(2)(ads) formation is the main pathway on Pt(111), and that the rate determining step (RDS) is the removal step of O(ads) on Pt(111). This RDS is accelerated on several highly active Pt alloys and core-shell surfaces, and this acceleration decreases the reaction intermediate O(ads). The increase in the partial pressure of O(2)(g) increases the surface coverage with O(ads) and OH(ads), and this coverage increase reduces the apparent reaction order with respect to the partial pressure to less than unity. This model shows details on how the reaction pathway, RDS, surface coverages, Tafel slope, reaction order and material-dependent activity are interrelated.  相似文献   

2.
Transient response and temperature-programmed desorption/reaction (TPD/TPR) methods were used to study the formation of adsorbed NO(x) from N2O and its effect during N2O decomposition to O2 and N2 over FeZSM-5 catalysts at temperatures below 653 K. The reaction proceeds via the atomic oxygen (O)(Fe) loading from N2O on extraframework active Fe(II) sites followed by its recombination/desorption as the rate-limiting step. The slow formation of surface NO(x,ads) species was observed from N2O catalyzing the N2O decomposition. This autocatalytic effect was assigned to the formation of NO(2,ads) species from NO(ads) and (O)(Fe) leading to facilitation of (O)(Fe) recombination/desorption. Mononitrosyl Fe2+(NO) and nitro (NO(2,ads)) species were found by diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) in situ at 603 K when N2O was introduced into NO-containing flow passing through the catalyst. The presence of NO(x,ads) does not inhibit the surface oxygen loading from N2O at 523 K as observed by transient response. However, the reactivity of (O)(Fe) toward CO oxidation at low temperatures (<523 K) is drastically diminished. Surface NO(x) species probably block the sites necessary for CO activation, which are in the vicinity of the loaded atomic oxygen.  相似文献   

3.
In relation to the heterogeneous hydrogenation of nitrite, adsorption of NO2-, NH4+, and NH2OH from the aqueous phase was examined on Pt/Al2O3, Pd/Al2O3, and Al2O3. None of the investigated inorganic nitrogen compounds adsorb on alumina at conditions presented in this study. NO2-(aq) and NH4+(aq) on the other hand show similar adsorption characteristics on both Pd/Al2O3 and Pt/Al2O3. The vibrational spectrum of the NO2- ion changed substantially upon adsorption, clearly indicating that NO2- chemisorbs onto the supported metal catalysts. On the contrary, adsorption of NH4+ does not lead to significant change in the vibrational spectrum of the ion, indicating that the NH4+ ion does not chemisorb on the noble metal but is stabilized via an electrostatic interaction. When comparing the adsorption of hydroxylamine (NH2OH(aq)) on Pd/Al2O3 and Pt/Al2O3, significant differences were observed. On Pd/Al2O3, hydroxylamine is converted into a stable NH2(ads) fragment, whereas on Pt/Al2O3 hydroxylamine is converted into NO, possibly via HNO(ads) as an intermediate.  相似文献   

4.
When standard reversible potentials for bulk solution reactions, U(0), are known, the reversible potentials when the reactant and product are adsorbed on an electrocatalyst surface, U(surf)(rev), are given in terms of these potentials and the adsorption Gibbs energy bond strengths: U(surf)(rev) = U0 + D(ads)G (Ox)/F-Δ(ads)G (R)/F (i). When the Δ(ads)G (Ox) and Δ(ads)G (Red) values are known at potential U, this equation is exact. When the overpotential for a multi-electron transfer reaction is minimal, each electron transfer takes place at the standard reversible potential for the overall reaction. In the case of O(2) reduction to water via the intermediate step OOH(aq) → O(aq) + OH(aq), or via O(2)(g) → 2O(aq), the respective endergonic O-O dissociation Gibbs energies are shown to be 2.52 eV and 4.76 eV. When the oxygen product and water reactant adsorb weakly, as on platinum, the adsorption Gibbs energies, Δ(ads)G, for O, OH, and OOH intermediates can be uniquely predicted using these data. All of the above depend exclusively on experimentally determined data. Reversible potentials have been calculated for oxygen reduction steps on the platinum electrocatalyst surface using Interface 1.0, a comprehensive computational code for the potential dependence of the electrochemical interface. Using these results as benchmarks, is found to be accurate to around 0.1 V when the Δ(ads)G are values calculated for the potentials of zero charge, instead of 1.229 V, which is a significant simplification. The variation in Δ(ads)G values between the calculated potentials of zero charge and 1.229 V are found to be 0.2 eV V(-1) or less. Prior work, using internal adsorption energies calculated at the potential of zero charge in place of Gibbs energies in was found to be accurate to within about 0.2 V. On platinum Δ(ads)G of the reaction OOH(ads) → O(ads) + OH(ads) is calculated at the potential of zero charge for the reactant and product to be about 1.2 eV exergonic under Langmuir conditions, and this Gibbs energy loss reduces the 1.229 V four-electron reversible potential on the platinum surface to an effective reversible potential of about 0.93 V for this mechanism on platinum. The effective reversible potential is a consequence of efficiency loss, not kinetics. Based on these values, the onset potential for four-electron oxygen reduction will be less than or equal to the effective reversible potential and on pure Pt(111) it appears to be equal to it.  相似文献   

5.
Catalytic ammonia oxidation over platinum has been studied experimentally from UHV up to atmospheric pressure with polycrystalline Pt and with the Pt single crystal orientations (533), (443), (865), and (100). Density functional theory (DFT) calculations explored the reaction pathways on Pt(111) and Pt(211). It was shown, both in theory and experimentally, that ammonia is activated by adsorbed oxygen, i.e. by O(ad) or by OH(ad). In situ XPS up to 1 mbar showed the existence of NH(x)(x= 0,1,2,3) intermediates on Pt(533). Based on a mechanism of ammonia activation via the interaction with O(ad)/OH(ad) a detailed and a simplified mathematical model were formulated which reproduced the experimental data semiquantitatively. From transient experiments in vacuum performed in a transient analysis of products (TAP) reactor it was concluded that N(2)O is formed by recombination of two NO(ad) species and by a reaction between NO(ad) and NH(x,ad)(x= 0,1,2) fragments. Reaction-induced morphological changes were studied with polycrystalline Pt in the mbar range and with stepped Pt single crystals as model systems in the range 10(-5)-10(-1) mbar.  相似文献   

6.
Reactions of the head-to-head 2-pyridonato-bridged cis-diammineplatinum(III) dinuclear complex having nonequivalent two platinum atoms, Pt(N(2)O(2)) and Pt(N(4)), with p-styrenesulfonate, 2-methyl-2-propene-1-sulfonate, 4-penten-1-ol, and 4-pentyn-1-ol were studied kinetically. Under the pseudo first-order reaction conditions that the concentration of the Pt(III) dinuclear complex is much smaller than that of olefin, a consecutive basically four-step reaction was observed: the olefin pi-coordinates preferentially to the Pt(N(2)O(2)) in the first step (step 1), followed by the second pi-coordination of another olefin molecule to the Pt(N(4)) (step 2). In the next step (step 3), the nucleophilic attack of water to the coordinated olefin triggers the pi-sigma bond conversion on the Pt(N(2)O(2)), and the second pi-bonding olefin molecule on the Pt(N(4)) is released. Finally, reductive elimination occurs to the alkyl group on the Pt(N(2)O(2)) to produce the alkyl compound (step 4). The first water substitution with olefin (step 1) occurs to the diaqua and aquahydroxo forms of the complex, whereas the second substitution (step 2) proceeds either on the coordinated OH(-) on the Pt(N(4)) (path a) or on the coordinatively unsaturated five-coordinate intermediate of the Pt(N(4)) (path b), in addition to the common substitution of H(2)O (path c). The reactions of p-styrenesulfonate and 2-methyl-2-propene-1-sulfonate proceed through paths b and c, whereas the reactions of 4-penten-1-ol and 4-pentyn-1-ol proceed through paths a and c. This difference reflects the difference of the trans effect and/or trans influence of the pi-coordinated olefins on the Pt(N(2)O(2)). The pentacoordinate state in path b is employed only by the sulfo-olefins, because these exert stronger trans effect. The steps 3 and 4 reflect the effect of the axial alkyl ligand (R) on the charge localization (R-Pt(IV)(N(2)O(2))-Pt(II)(N(4))) and delocalization (R-Pt(III)(N(2)O(2))-Pt(III)(N(4))-OH(2)); when R is p-styrenesulfonate having an electron withdrawing group, the charge localization in the dimer is less pronounced and the water molecule on the Pt(N(4)) atom is retained (R-Pt(III)(N(2)O(2))-Pt(III)(N(4))-OH(2)) in the intermediate state. In both routes, the alkyl group undergoes nucleophilic attack of water, and the oxidized products are released via reductive elimination.  相似文献   

7.
Water molecules desorbing from the bare Pt(553) surface desorb in a three peak structure, associated with, respectively, desorption from step and terrace sites and the water multilayer. Upon pre-covering the step sites with O(ad) we mainly observe OH formation on step sites. When terrace sites are also pre-covered with O(ad), OH(terrace) formation is favored over OH(step) formation, presumably because OH formed at terrace sites is more easily incorporated in a hydrogen bonded network of OH/H(2)O. This is a gradual process: with increasing θ(O) less OH(step) is formed. Thus, in spite of the fact that OH at step sites has a higher binding energy than OH at terrace sites, the possibility of the formation of OH at terrace sites actually inhibits the formation of OH at step sites, leaving O(step) as the most stable water dissociation product on the step.  相似文献   

8.
The interaction of Pt particles with the regular CeO(2)(111) surface has been studied using Pt(8) clusters as representative examples. The atomic and electronic structure of the resulting model systems have been obtained through periodic spin-polarized density functional calculations using the PW91 exchange-correlation potential corrected with the inclusion of a Hubbard U parameter. The focus is on the effect of the metal-support interaction on the surface reducibility of ceria. Several initial geometries and orientations of Pt(8) with respect to the ceria substrate have been explored. It has been found that deposition of Pt(8) over the ceria surface results in spontaneous oxidation of the supported particle with a concomitant reduction of up to two Ce(4+) cations to Ce(3+). Oxygen vacancy formation on the CeO(2)(111) surface and oxygen spillover to the adsorbed particle have also been considered. The presence of the supported Pt(8) particles has a rather small effect (~0.2 eV) on the O vacancy formation energy. However, it is predicted that the spillover of atomic oxygen from the substrate to the metal particle greatly facilitates the formation of oxygen vacancies: the calculated energy required to transfer an oxygen atom from the CeO(2)(111) surface to the supported Pt(8) particle is only 1.00 eV, i.e. considerably smaller than 2.25 eV necessary to form an oxygen vacancy on the bare regular ceria surface. This strongly suggests that the propensity of ceria systems to store and release oxygen is directly affected by the presence of supported Pt particles.  相似文献   

9.
A model potential for the adsorbate-adsorbate interaction among OH and H2O molecules adsorbed on a Pt(111) surface has been developed solely based on first-principle calculations. By combining this directional-dependent model potential for the lateral interaction with a lattice model of Ising type, large length scale structure calculations can be made. The strength of different hydrogen bonds can be analyzed in detail from this model potential. It is found that the hydrogen bond between OH and H2O molecules is stronger than that between two H2O molecules (0.4 eV per pair as compared to 0.2 eV per pair, respectively). Via the computed chemical potential for water in mixed OH + H2O overlayers the water uptake as a function of oxygen precoverage on Pt(111) has been determined. The results compare very well with recent experiments.  相似文献   

10.
The usual empirical rule stating that the C=C bond is more reactive than the C=O group for catalytic hydrogenations of unsaturated aldehydes is invalidated from the present study. Density functional theory calculations of all the competitive hydrogenation routes of acrolein on Pt(111) reveals conversely that the attack at the C=O bond is systematically favored. The explanation of such catalytic behavior is the existence of metastable precursor states for the O-H bond formation showing that the attack at the oxygen atom follows a new preferential mechanism where the C=O moiety is not directly bonded with the Pt surface atoms, hence yielding an intermediate pathway between Langmuir-Hinshelwood and Rideal-Eley general types of mechanisms. When the whole catalytic cycle is considered, our results reconcile with experimental studies devoted to hydrogenation of acrolein on Pt, since the desorption step of the partially hydrogenated product (unsaturated alcohol versus saturated aldehyde) plays a key role for the selectivity.  相似文献   

11.
Density functional theory (DFT) was used to study the electrolyte solution effects on the oxygen reduction reaction (ORR) on Pt(111). To model the acid electrolyte, an H(5)O(2)(+) cluster was used. The vibrational proton oscillation modes for adsorbed H(5)O(2)(+) computed at 1711 and 1010 cm(-1), in addition to OH stretching and H(2)O scissoring modes, agree with experimental vibrational spectra for proton formation on Pt surfaces in ultrahigh vacuum. Using the H(5)O(2)(+) model, protonation of adsorbed species was found to be facile and consistent with the activation barrier of proton transfer in solution. After protonation, OOH dissociates with an activation barrier of 0.22 eV, similar to the barrier for O(2) dissociation. Comparison of the two pathways suggests that O(2) protonation precedes dissociation in the oxygen reduction reaction. Additionally, an OH diffusion step following O protonation inhibits the reaction, which may lead to accumulation of oxygen on the electrode surface.  相似文献   

12.
The initial step for silicate and aluminosilicate condensation is studied in water in the presence of a realistic tetrapropylammonium template under basic conditions. The model corresponds to the synthesis conditions of ZSM5. The free energy profile for the dimer formation ((OH)(3)Si-O-Si-(OH)(2)O(-) or [(OH)(3)Al-O-Si-(OH)(3)](-)) is calculated with ab initio molecular dynamics and thermodynamic integration. The Si-O-Si dimer formation occurs in a two-step manner with an overall free energy barrier of 75 kJ mol(-1). The first step is associated with the Si-O bond formation and results in an intermediate with a five-coordinated Si, and the second one concerns the removal of the water molecule. The template is displaced away from the Si centres upon dimer formation, and a shell of water molecules is inserted between the silicate and the template. The main effect of the template is to slow down the backward hydrolysis reaction with respect to the condensation one. The Al-O-Si dimer formation first requires the formation of a metastable precursor state by proton transfer from Si(OH)(4) to Al(OH)(4)(-) mediated by a solvent molecule. It then proceeds through a single step with an overall barrier of 70 kJ mol(-1). The model with water molecules explicitly included is then compared to a simple calculation using an implicit continuum model for the solvent. The results underline the importance of an explicit and dynamical treatment of the water solvent, which plays a key role in assisting the reaction.  相似文献   

13.
We present a combined in situ Fourier transform infrared reflection-absorption spectroscopy and voltammetric study of the reduction of saturated and subsaturated NO adlayers on Pt(111) and Pt(110) single-crystal surfaces in acidic media. The stripping voltammetry experiments and the associated evolution of infrared spectra indicate that different features (peaks) observed in the voltammetric profile for the electrochemical reduction of NO adlayers on the surfaces considered are related to the reduction of NO(ads) at different adsorption sites and not to different (consecutive) processes. More specifically, reduction of high- and intermediate-coverage (ca. 0.5-1 monolayers (ML)) NO adlayers on Pt(110) is accompanied by site switching from atop to bridge position, in agreement with the ultra-high-vacuum data. On Pt(111) linearly bonded (atop) NO and face-centered cubic 3-fold-hollow NO species coexist at high coverages (0.25-0.5 ML) and can be reduced consecutively and independently. On Pt(111) and Pt(110) electrodes, linearly bonded NO species are more reactive than multifold-bonded NO species. Both spectroscopic and voltammetric data indicate that ammonia is the main product of NO(ads) reduction on the two surfaces examined.  相似文献   

14.
The adsorption of H(2)O(2) on Pt and Pt-M alloys, where M is Cr, Co, or Ni, is investigated using density functional theory. Binding energies calculated with a hybrid DFT functional (B3PW91) are in the range of -0.71 to -0.88 eV for H(2)O(2) adsorbed with one of the oxygen atoms on top Pt positions of Pt(3), Pt(2)M, and PtM(2), and enhanced values in the range of -0.81 to -1.09 eV are found on top Ni and Co sites of the Pt(2)M clusters. Adsorption on top sites of Pt(10) yields a weaker binding of -0.48 eV, whereas on periodic Pt(111) and Pt(3)Co(111) surfaces, H(2)O(2) generally dissociates into two OH radicals. On the other hand, attempts to attach H(2)O(2) on bridge sites cause spontaneous dissociation of H(2)O(2) into two adsorbed OH radicals, suggesting that stable adsorptions on bridge sites are not possible for any of the clusters or extended surfaces that are being studied. We also found that the water-H(2)O(2) interaction reduces the strength of the adsorption of H(2)O(2) on these clusters and surfaces.  相似文献   

15.
The activation of adsorbed CO is an important step in CO hydrogenation. The results from TPSR of pre-adsorbed CO with H2 and syngas suggested that the presence of H2 increased the amount of CO adsorption and accelerated CO dissocia-tion. The H2 was adsorbed first, and activated to form H* over metal sites, then reacted with carbonaceous species. The oxygen species for CO2 formation in the presence of hydrogen was mostly OH*, which reacted with adsorbed CO subsequently via CO*+OH* → CO2*+H*; however, the direct CO dissociation was not excluded in CO hydrogenation. The dissociation of C-O bond in the presence of H2 proceeded by a concerted mechanism, which assisted the Boudourd reaction of adsorbed CO onthe surface via CO*+2H* → CH*+OH*. The formation of the surface species (CH) from adsorbed CO proceeded as indicated with the participation of surface hydrogen, was favored in the initial step of the Fischer-Tropsch synthesis.  相似文献   

16.
One-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) coordination polymers were prepared by self-assembly of binary metal complex systems, copper(II) nitrate and (en)Pt(II)(nic)(2) or (dmpda)Pt(II)(isonic)(2) (en = ethylenediamine, dmpda = 2,2'-dimethyl-1,3-propanediamine, nic = nicotinate, and isonic = isonicotinate), in aqueous solutions. Equimolar reactions of copper(II) nitrate with (dmpda)Pt(II)(isonic)(2) and (en)Pt(II)(nic)(2) resulted in 1-D ([(dmpda)Pt(isonic)(2)Cu(OH(2))(3)](NO(3))(2))(n)() (1) and 2-D ([(en)Pt(nic)(2)Cu(OH(2))](NO(3))(2))(n) (2), respectively, but the reaction of (en)Pt(II)(nic)(2) with excess copper(II) nitrate gave 3-D ([((en)Pt(nic)(2))(3)Cu(5)(OH)(2)(OH(2))(6)](NO(3))(8))(n) (3). The local structure of crystal 1 has a mononuclear copper unit, 2 has a dinuclear copper unit with a Cu-Cu distance of 2.659(5) A, and 3 has a pentanuclear copper unit. The methyl groups of the dmpda ligand are located in the space between two isonicotinate ligands of 1, which is presumed to be an important factor to determine the final structure of the crystal formed by self-assembly. Magnetic behaviors of crystals 1-3 examined in the temperature range of 4-300 K appear to be governed by the local structures around the copper(II) ions and do not indicate any significant long-range magnetic exchange interactions along the polymeric chain.  相似文献   

17.
[Pt(2,2'-bpy)(1-MeC-N3)(2)](NO(3))(2) (1) (2,2'-bpy = 2,2'-bipyridine; 1-MeC = 1-methylcytosine) exists in water in an equilibrium of head-tail and head-head rotamers, with the former exceeding the latter by a factor of ca. 20 at room temperature. Nevertheless, 1 reacts with (en)Pd(II) (en = ethylenediamine) to give preferentially the dinuclear complex [Pt(2,2'-bpy)(1-MeC(-)-N3,N4)(2)Pd(en)](NO(3))(2)·5H(2)O (2) with head-head arranged 1-methylctosinato (1-MeC(-)) ligands and Pd being coordinated to two exocyclic N4H(-) positions. Addition of AgNO(3) to a solution of 2 leads to formation of a pentanuclear chain compound [{Pt(2,2'-bpy)(1-MeC(-))(2)Pd(en)}(2)Ag](NO(3))(5)·14H(2)O (5) in which Ag(+) cross-links two cations of 2 via the four available O2 sites of the 1-MeC(-) ligands. 2 and 5 appear to be the first X-ray structurally characterized examples of di- and multinuclear complexes derived from a Pt(II) species with two cis-positioned cytosinato ligands adopting a head-head arrangement. (tmeda)Pd(II) (tmeda = N,N,N',N'-tetramethylethylenediamine) and (2,2'-bpy)Pd(II) behave differently toward 1 in that in their derivatives the head-tail orientation of the 1-MeC(-) nucleobases is retained. In [Pt(2,2'-bpy)(1-MeC(-))(2){Pd(2,2'-bpy)}(2)](NO(3))(4)·10H(2)O (4), both (2,2'-bpy)Pd(II) entities are pairwise bonded to N4H(-) and O2 sites of the two 1-MeC(-) rings, whereas in [Pt(2,2'-bpy)(1-MeC(-))(2){Pd(tmeda)}(2)(NO(3))](NO(3))(3)·5H(2)O (3) only one of the two (tmeda)Pd(II) units is chelated to N4H(-) and O2. The second (tmeda)Pd(II) is monofunctionally attached to a single N4H(-) site. On the basis of these established binding patterns, ways to the formation of mixed Pt/Pd complexes and possible intermediates are proposed. The methylene protons of the en ligand in 2 are special in that they display two multiplets separated by 0.64 ppm in the (1)H NMR spectrum.  相似文献   

18.
The highly selective conversion of nitrite to N(2) at a quasi-perfect Pt(100) electrode in alkaline media was investigated with a particular emphasis on its structure sensitivity and its mechanism. High-quality (100) terraces are required to optimize the catalytic activity and steer the selectivity to N(2): defects of any symmetry dramatically reduce the N(2) evolution at [(100) × (110)] and [(100) × (111)] surfaces. On the other hand, nitrite reduction proves to be an additional example of the unique intrinsic ability of (100) surfaces to catalyze reactions involving bond breaking and successive bond formation. In the present case, (100) is able to reduce nitrite to NH(2,ads), which in a certain potential window combines with NO(ads) to give N(2) in a Langmuir-Hinshelwood reaction. Our findings are similar to those for other processes generating N(2), from bacterial anoxic ammonia oxidation ("anammox") to the high-temperature NO + NH(3) reaction at Pt(100) crystals under ultra-high-vacuum conditions, thus suggesting that the combination of these two nitrogen-containing species is a universal (low-temperature) pathway to N(2). The advantages of this pathway over other N(2)-generating pathways are pointed out.  相似文献   

19.
The study of catalytic behavior begins with one seemingly simple process, namely the hydrogenation of O to H2O on platinum. Despite the apparent simplicity its mechanism has been much debated. We have used density functional theory with gradient corrections to examine microscopic reaction pathways for several elementary steps implicated in this fundamental catalytic process. We find that H2O formation from chemisorbed O and H atoms is a highly activated process. The largest barrier along this route, with a value of approximately 1 eV, is the addition of the first H to O to produce OH. Once formed, however, OH groups are easily hydrogenated to H2O with a barrier of approximately 0.2 eV. Disproportionation reactions with 1:1 and 2:1 stoichiometries of H2O and O have been examined as alternative routes for OH formation. Both stoichiometries of reaction produce OH groups with barriers that are much lower than that associated with the O + H reaction. H2O, therefore, acts as an autocatalyst in the overall H2O formation process. Disproportionation with a 2:1 stoichiometry is thermodynamically and kinetically favored over disproportionation with a 1:1 stoichiometry. This highlights an additional (promotional) role of the second H2O molecule in this process. In support of our previous suggestion that the key intermediate in the low-temperature H2O formation reaction is a mixed OH and H2O overlayer we find that there is a very large barrier for the dissociation of the second H2O molecule in the 2:1 disproportionation process. We suggest that the proposed intermediate is then hydrogenated to H2O through a very facile proton-transfer mechanism.  相似文献   

20.
Mixed OH/H2O structures, formed by the reaction of O and water on Pt(111), decompose near 200 K as water desorbs. With an apparent activation barrier that varies between 0.42 and 0.86 eV depending on the composition, coverage, and heating rate of the film, water desorption does not follow a simple kinetic form. The adsorbate is stabilized by the formation of a complete hydrogen bonding network between equivalent amounts of OH and H2O, island edges, and defects in the structure enhancing the decomposition rate. Monte Carlo simulations of water desorption were made using a model potential fitted to first-principles calculations. We find that desorption occurs via several distinct pathways, including direct or proton-transfer mediated desorption and OH recombination. Hence, no single rate determining step has been found. Desorption occurs preferentially from low coordination defect or edge sites, leading to complex kinetics which are sensitive to both the temperature, composition, and history of the sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号