首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnetic susceptibility χ of coarse-grained WC and nanocrystalline n-WC tungsten carbides has been studied in a temperature range of 300–1250 K. The dependence χ (T) for coarse-grained WC carbide has no singularities. A stable particle size of about 55 nm remains in the n-WC nanopowder after annealing at 300–1200 K, whereas the relaxation of microstrains occurs at 550–920 K. The dependence χ(T) for nanocrystalline n-WC carbide in a range of 550–920 K exhibits features associated with the annealing of microstrains, which reduces the contribution of orbital paramagnetism to the susceptibility of n-WC carbide and initiates the precipitation of small iron and cobalt impurities in the form of superparamagnetic particles.  相似文献   

2.
3.
Nanocrystalline powders of the nonstoichiometric tantalum carbide TaCy (0.81 ≤ y ≤ 0.96) with an average particle size in the range from 45 to 20 nm have been prepared using high-energy ball milling of coarse-grained powders. The density of the initial coarse-grained and prepared nanocrystalline powders of TaCy has been measured by helium pycnometry. The sizes of particles in tantalum carbide powders have been estimated using the X-ray diffraction analysis and the Brunauer–Emmett–Teller (BET) method. The density of TaCy nanopowders measured by helium pycnometry is underestimated as compared to the true density due to the adsorption of helium by the highly developed surface of the nanocrystalline powders. It has been shown that the difference between the true and measured densities is proportional to the specific surface area or is inversely proportional to the average particle size of the nanopowders. The large difference between the true and measured pycnometric densities indicates a superhydrophobicity of the tantalum carbide nanopowders.  相似文献   

4.
The effect of the working gas pressure (P ≈ 1.33–0.09 Pa) and the substrate temperature (Ts ≈ 77–550 K) on the texture and the microstructure of nickel films deposited by magnetron sputtering onto SiO2/Si substrates is studied. Ni(200) films with a transition type of microstructure are shown to form at growth parameters P ≈ 0.13–0.09 Pa and Ts ≈ 300–550 K, which ensure a high migration ability of nickel adatoms on a substrate. This transition type is characterized by a change of the film structure from quasi-homogeneous to quasi-columnar when a film reaches a critical thickness. Ni(111) films with a columnar microstructure and high porosity form at a low migration ability, which takes place at P ≈ 1.33–0.3 Pa or upon cooling a substrate to Ts ≈ 77 K.  相似文献   

5.
The magnetization M(H) in the superconducting state, dc magnetic susceptibility χ(T) in the normal state, and specific heat C(T) near the superconducting transition temperature T c have been measured for a series of fine-crystalline YBa2Cu3O y samples having nearly optimum values of y = 6.93 ± 0.3 and T c = (91.5 ± 0.5) K. The samples differ only in the degree of nanoscale structural inhomogeneity. The characteristic parameters of superconductors (the London penetration depth and the Ginzburg–Landau parameter) and the thermodynamic critical field H c are determined by the analysis of the magnetization curves M(H). It is found that the increase in the degree of nanoscale structural inhomogeneity leads to an increase in the characteristic parameters of superconductors and a decrease in H c(T) and the jump of the specific heat ΔC/T c. It is shown that the changes in the physical characteristics are caused by the suppression of the density of states near the Fermi level. The pseudogap is estimated by analyzing χ(T). It is found that the nanoscale structural inhomogeneity significantly enhances and probably even creates the pseudogap regime in the optimally doped high-T c superconductors.  相似文献   

6.
Magnetization M(H,T) in magnetic fields H up to 90 kOe and at temperatures 2 K ≤ T < T c (where Tc is the superconducting transition temperature), along with magnetic susceptibility χ(T) in the normal state T c < T < 400 K for optimally oxygen-doped samples of YBa2Cu3O6.92 with varying degrees of defects in the crystal structure, are studied to determine the influence of structural inhomogeneity on the electron systems characteristics of cuprate superconductors. It is shown that the existence of structural inhomogeneity of samples leads to the manifestation of peculiarities appropriate to pseudogap regime in their properties.  相似文献   

7.
High-precision measurements of thermopower have been performed in a wide temperature range (2–300 K) for a series of cerium-based heavy-fermion compounds, including CeB6, CeAl3, CeCu6, and substitutional solid solutions of the CeCu6 ? x Au x system (x = 0.1, 0.2). All compounds exhibit an unusual (logarithmic) asymptotic behavior of the temperature dependence of the Seebeck coefficient: S ∝ ?lnT. In the case of cerium hexaboride, this anomalous behavior of S(T) is accompanied by the appearance of weak-carrier-localization-mode asymptotics in the conductivity (σ(T) ∝ T 0.39), while the paramagnetic susceptibility χ(T) and the effective mass of charge carriers m eff(T) vary according to a power law (χ(T), m eff(T) ∝ T ?0.8) in the temperature interval T = 10–80 K. This behavior corresponds to renormalization of the density of states at the Fermi level. The observed anomalous behavior of thermopower in CeB6 and other cerium-based intermetallic compounds is attributed to the formation of heavy fermions (many-body states in the metal matrix) at low temperatures.  相似文献   

8.
The thermal conductivity k and resistivity ρ of biocarbon matrices, prepared by carbonizing medium-density fiberboard at T carb = 850 and 1500°C in the presence of a Ni-based catalyst (samples MDF-C( Ni)) and without a catalyst (samples MDF-C), have been measured for the first time in the temperature range of 5–300 K. X-ray diffraction analysis has revealed that the bulk graphite phase arises only at T carb = 1500°C. It has been shown that the temperature dependences of the thermal conductivity of samples MDFC- 850 and MDF-C-850(Ni) in the range of 80–300 K are to each other and follow the law of k(T) ~ T 1.65, but the use of the Ni-catalyst leads to an increase in the thermal conductivity by a factor of approximately 1.5, due to the formation of a greater fraction of the nanocrystalline phase in the presence of the Ni-catalyst at T carb = 850°C. In biocarbon MDF-C-1500 prepared without a catalyst, the dependence is k(T) ~ T 1.65, and it is controlled by the nanocrystalline phase. In MDF-C-1500(Ni), the bulk graphite phase formed increases the thermal conductivity by a factor of 1.5–2 compared to the thermal conductivity of MDF-C-1500 in the entire temperature range of 5–300 K; k(T = 300 K) reaches the values of ~10 W m–1 K–1, characteristic of biocarbon obtained without a catalyst only at high temperatures of T carb = 2400°C. It has been shown that MDF-C-1500(Ni) in the temperature range of 40?300 K is characterized by the dependence, k(T) ~ T 1.3, which can be described in terms of the model of partially graphitized biocarbon as a composite of an amorphous matrix with spherical inclusions of the graphite phase.  相似文献   

9.
The EPR of Mn ions in the (La1?yPry)0.7Ca0.3MnO3 system has been studied within a broad range of temperatures (4<T<600 K) and Pr concentrations (0≤y≤1), as well as under isotope substitution of 18O for 16O. All compositions were shown to undergo transitions to a magnetically ordered state with decreasing temperature. Magnetic phase diagrams were constructed for systems with different oxygen isotopes. The diagrams include paramagnetic, ferromagnetic, and antiferromagnetic regions. In the paramagnetic region, at temperatures not too close to the phase transition points, the Mn ion linewidth ΔH pp (T) is related to the magnetic susceptibility χ(T) through the relation ΔH pp (T) = [χ0/χ(T)]ΔH pp (∞) + ΔH0, where ΔH pp (∞) is the width of the exchange-narrowed line in the high-temperature approximation, χ0 ∝ 1/T is the susceptibility of noninteracting ions, and ΔH0 is the residual width originating from the sample porosity and resonance-field scatter in unoriented grains of a powder sample. An analysis of the data on ΔH pp (∞), ΔH0, and χ(T) made it possible to estimate the symmetric and antisymmetric exchange interaction of Mn ions and of the noncubic crystal-field component of the oxygen ions. These parameters were found to be independent of the oxygen isotope species to within experimental error.  相似文献   

10.
The behavior of the magnetization M and the magnetic susceptibility χ is theoretically analyzed for ferromagnets at the temperature T=T m corresponding to the maximum of the function χ(T). Four new methods of determining the Curie temperature TC with the use of the derived relationships are proposed. One of these methods is based on the relationship χ(T m ) =21/3χ(TC) (the 21/3 rule). The results are applied for processing experimental data obtained for lanthanum manganite of composition La0.85Sr0.15MnO3.  相似文献   

11.
We have studied the resistivity and thermoelectromotive force (thermo emf) in a temperature range of T = 80–1000 K, the magnetic susceptibility and magnetization in a temperature range of T = 4.2–300 K at an external magnetic field of up to 70 kOe, and the structural characteristics of Co x Mn1?x S sulfides (0 ≤ x ≤ 0.4). Anomalies in the transport properties of these compounds have been found in the temperature intervals ΔT 1 = 200–270 K and ΔT 2 = 530–670 K and at T 3T N. The temperature dependences of the magnetic susceptibility, magnetization, and resistivity, as well as the current-voltage characteristics, exhibit hysteresis. In the domain of magnetic ordering at temperatures below the Néel temperature (T N), the antiferromagnetic Co x Mn1?x S sulfides possess a spontaneous magnetic moment that is explained using a model of the orbital ordering of electrons in the t 2g bands. The influence of the cobalt-ion-induced charge ordering on the transport and magnetic properties of sulfides has been studied. The calculated values of the temperatures corresponding to the maxima of charge susceptibility, which are related to a competition between the on-site Coulomb interaction of holes in various subbands and their weak hybridization, agree well with the experimental data.  相似文献   

12.
Temperature dependences of specific heat Cp(T) and coefficient of thermal expansion ;(T) for Na0.95Li0.05NbO3 sodium-lithium niobate ceramic samples are investigated in the temperature range of 100–800 K. The Cp(T) and α(T) anomalies at T3 = 310 ± 3 K, T2 = 630 ± 8 K, and T1 = 710 ± 10 K are observed, which correspond to the sequence of phase transitions N ? Q ? S(R) ? T2(S). The effect of heat treatment of the samples on the sequence of structural distortions was established. It is demonstrated that annealing of the samples at 603 K leads to splitting of the anomaly corresponding to the phase transition QR/S in two anomalies. After sample heating to 800 K, the only anomaly is observed in both the Cp(T) and ;(T) dependence. Possible mechanisms of the observed phenomena are discussed.  相似文献   

13.
Thin films of 2,9-Bis [2-(4-chlorophenyl)ethyl] anthrax [2,1,9-def:6,5,10-d′e′f′] diisoquinoline-1,3,8,10 (2H,9H) tetrone (Ch-diisoQ) were prepared by thermal evaporation technique. Structural properties of these (as-prepared and annealed at 373, 423, 473 and 523 K) films were determined by X-ray diffraction and scanning electron microscopy, which showed that the grain sizes increasing by the annealing effect. The transmittance and reflectance of all Ch-diisoQ thin films were measured in the range 200–2500 nm. Some optical constants such as optical band gap (E g ), dispersion energy (E d ), single oscillator energy (E o ) and optical dielectric constant at a higher frequency (ε ) were calculated at different annealing temperatures. The optical band gap of the samples is decreased with the increase of annealing temperatures due to the increasing of the π-dislocation. Finally, the values of the optical susceptibility, χ(3), were found to be annealing dependence.  相似文献   

14.
The temperature dependence of the thermal expansion ΔL/L of samples of high-density nanostructural CuO ceramics with a crystallite size of 20, 70, and 90 nm was measured. The nanoceramics were obtained from coarse-grained CuO powders under converging spherical shock waves. It is found that, at temperatures T > 50 K, the thermal expansion coefficient α(T) of the nanoceramic samples increases with decreasing crystallite sizes and exceeds the value of α(T) of the CuO single crystal by a factor of 3.5 to 4.5. At temperatures T < 50 K, regions with zero and negative values of α(T) were revealed. The possible reasons for the increase in the thermal expansion coefficient of nanoceramics based on 3d-metal oxides are discussed.  相似文献   

15.
The magnetic properties of strongly correlated Fermi systems are studied within the framework of the fermioncondensation model—phase transition associated with the rearrangement of the Landau quasiparticle distribution, resulting in the appearance of a plateau at T=0 exactly in the Fermi surface of the single-particle excitation spectrum. It is shown that the Curie-Weiss term ~T?1 appears in the expression for the spin susceptibility χac(T) of the system after the transition point at finite temperatures. The behavior of χac(T, H) as a function of temperature and static magnetic field H in the region where the critical fermion-condensation temperature T f is close to zero is discussed. The results are compared with the available experimental data.  相似文献   

16.
The static magnetic susceptibility (χ) of own-made HCl-doped polyaniline pellets is investigated experimentally over the full range of the protonation level Y and in the temperature (T) range 10–300 K.The obtained results suggest that χ and the electrical conductivity σ – which is known from previous work – are interrelated.Namely, there is a weakly Y dependent crossover temperature T * where both χ and σ undergo notable changes.In χ, this refers to a simultaneous enhancement (reduction) of the Pauli-type susceptibility χ P and reduction (enhancement) of the Curie constant C at T = T * when T increases (decreases).Below T < T *, where thermal effects are weak to moderate, a steep increase of χ P(Y) around Y = 0.3 occurs together with a drop of C(Y).The above findings are consistent with a picture in which, at T *, spins that disappear from C reappear in χ P, and vice versa.This model is used to address the longitudinal and transversal electron localisation lengths as functions of Y, the former being estimated to take values in the range 7–8 Åand the latter in the range 1–2 Å.  相似文献   

17.
The paramagnetic relaxation in CeCl3 was investigated in the temperature interval between 1.07°K and 4.21°K using a mutual inductance bridge at frequencies between 3 Hz and 3200 Hz. The dependence of the complex susceptibility on temperature below theλ point is given by a Debye function. Above this temperature, however, deviations occur. The temperature dependence of the relaxation time forT<T λ can be described byτT ?n where 1.82≦n≦2.35 for 470 Oe≦H≦3360 Oe. At the highest temperatures Orbach Processes occur over the first excited crystal field component which according to these measurements lies atE II=k(56±10)°K. In the entire temperature range the relaxation processes are determined by further relaxation mechanisms in addition to the spin lattice relaxation. The nature of these could not, however, be determined.  相似文献   

18.
For a 2D electron system in silicon, the temperature dependence of the Hall resistance ρxy(T) is measured in a weak magnetic field in the range of temperatures (1–35 K) and carrier concentrations n where the diagonal resistance component exhibits a metallic-type behavior. The temperature dependences ρxy(T) obtained for different n values are nonmonotonic and have a maximum at Tmax ~ 0.16TF. At lower temperatures T < Tmax, the change δρxy(T) in the Hall resistance noticeably exceeds the interaction quantum correction and qualitatively agrees with the semiclassical model, where only the broadening of the Fermi distribution is taken into account. At higher temperatures T > Tmax, the dependence ρxy(T) can be qualitatively explained by both the temperature dependence of the scattering time and the thermal activation of carriers from the band of localized states.  相似文献   

19.
The temperature dependence of the magnetic susceptibility of La2NiO4+δ single crystals with δ = 0.095 and 0.105 has been analyzed. The anomalous dependence of χ(T) characteristic of stripe structures previously found in La1.8Sr0.2NiO4 has been found. Investigation of the dependence χ(T) on the impurity and charge disorder degrees makes it possible to separate the contribution associated with the ordering of holes and impurity oxygen. It has been shown that the contribution from the ordering of holes is well described by the model of ferromagnetic Heisenberg chains of spins S = 1/2. The length of the chains and intrachain interaction J N have been determined from the temperature dependence χ(T).  相似文献   

20.
The dielectric response, conductivity, and domain structure of (Na1/2Bi1/2)TiO3 single crystals are studied in the temperature range of 290–750 K for the [100], [110], and [111] crystallographic directions. It is shown that the region of optical isotropization is observed in polarized light in the temperature range of 570–620 K. In this case, the birefringence (Δn) decreases and disappears (together with the image of the domain structure) for the [100] directions. The region of optical isotropization in the [111] directions is characterized by the disappearance of the image of the domain structure and by the existence of individual regions with partial quenching. The domain structure in the [110] directions remains distinguished against the background of a significant decrease in Δn in the indicated temperature range. The region of isotropization is also manifested in the temperature dependence of the imaginary part of the dielectric response and is determined by the isotropic character of the conductivity in the range of 570–620 K. The bulk conductivity has a thermally activated character with activation energies E a = 50?60 meV at T < 500 K and E a = 700?900 meV for T > 620 K. The low-frequency dispersion of the dielectric response is determined by the Maxwell–Wagner mechanism and is due to an increase in the ionic conductivity at temperatures above 620 K. The anisotropy of the susceptibility holds in the entire studied ranges of frequencies (25 Hz–1 MHz) and temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号