首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The epitaxial growth of GaN layers on sapphire substrates by molecular beam epitaxy at low temperatures (500°C) has been investigated. Samples exhibited a transition from hexagonal to mixed hexagonal/cubic phase under conditions of increasing Ga flux as determined using a TEM-RHEED technique with complementary SEM and PL observations. Embedded cubic grains adopted two domain variants with additional evidence for twinning.  相似文献   

2.
Semiconductor magnetic quantum dots are very promising structures, with novel properties that find multiple applications in spintronic devices. EuTe is a wide gap semiconductor with NaCl structure, and strong magnetic moments S=7/2 at the half filled 4f7 electronic levels. On the other hand, SnTe is a narrow gap semiconductor with the same crystal structure and 4% lattice mismatch with EuTe. In this work, we investigate the molecular beam epitaxial growth of EuTe on SnTe after the critical thickness for island formation is surpassed, as a previous step to the growth of organized magnetic quantum dots. The topology and strain state of EuTe islands were studied as a function of growth temperature and EuTe nominal layer thickness. Reflection high energy electron diffraction (RHEED) was used in-situ to monitor surface morphology and strain state. RHEED results were complemented and enriched with atomic force microscopy and grazing incidence X-ray diffraction measurements made at the XRD2 beamline of the Brazilian Synchrotron. EuTe islands of increasing height and diameter are obtained when the EuTe nominal thickness increases, with higher aspect ratio for the islands grown at lower temperatures. As the islands grow, a relaxation toward the EuTe bulk lattice parameter was observed. The relaxation process was partially reverted by the growth of the SnTe cap layer, vital to protect the EuTe islands from oxidation. A simple model is outlined to describe the distortions caused by the EuTe islands on the SnTe buffer and cap layers. The SnTe cap layers formed interesting plateau structures with easily controlled wall height, that could find applications as a template for future nanostructures growth.  相似文献   

3.
CdTe(2 1 1)B epilayers were grown on 3 in Si(2 1 1) substrates which misoriented 0–10° toward [1 1 1] by molecular beam epitaxy (MBE). The relationship of X-ray double-crystal rocking curve (XRDCRC) FWHM and deflection angle from CdTe(2 1 1) to Si(2 1 1) was studied. For 4.2–4.5 μm CdTe, the best value of FWHM 83 arcsec was achieved while deflection angle is 2.76°. A FWHM wafer mapping indicated a good crystalline uniformity of 7.4 μm CdTe on tilting Si(2 1 1), with FWHM range of 60–72 arcsec. The shear strains of these epilayers were analyzed, using reciprocal lattice points of symmetric and asymmetric reflections measured by high-resolution multi-crystal multi-reflection X-ray diffractometer (HRMCMRXD). It was found that the shear strain angle of epilayer is effectively reduced by using proper tilting Si(2 1 1) substrate. It was also proved that the lattice parameter of CdTe(2 1 1)B is affected by the shear strain and thermal strain.  相似文献   

4.
GaAsSb ternary epitaxial layers were grown on GaAs (0 0 1) substrate in various Sb4/As2 flux ratios by solid source molecular beam epitaxy. The alloy compositions of GaAs1−ySby were inferred using high-resolution X-ray symmetric (0 0 4) and asymmetric (2 2 4) glance exit diffraction. The non-equilibrium thermodynamic model is used to explain the different incorporation behavior between the Sb4 and As2 under the assumption that one incident Sb4 molecule produces one active Sb2 molecule. It is inferred that the activation energy of Sb4 dissociation is about 0.46 eV. The calculated results for the incorporation efficiency of group V are in good agreement with the experimental data.  相似文献   

5.
Tensile-strained InAlAs layers have been grown by solid-source molecular beam epitaxy on as-grown Fe-doped semi-insulating (SI) InP substrates and undoped SI InP substrates obtained by annealing undoped conductive InP wafers (wafer-annealed InP). The effect of the two substrates on InAlAs epilayers and InAlAs/InP type II heterostructures has been studied by using a variety of characterization techniques. Our calculation data proved that the out-diffusion of Fe atoms in InP substrate may not take place due to their low diffusion coefficient. Double-crystal X-ray diffraction measurements show that the lattice mismatch between the InAlAs layers and the two substrates is different, which is originated from their different Fe concentrations. Furthermore, photoluminescence results indicate that the type II heterostructure grown on the wafer-annealed InP substrate exhibits better optical and interface properties than that grown on the as-grown Fe-doped substrate. We have also given a physically coherent explanation on the basis of these investigations.  相似文献   

6.
Zinc-blende GaN quantum dots were grown on 3C-AlN(0 0 1) by a vapor–liquid–solid process in a molecular beam epitaxy system. We were able to control the density of the quantum dots in a range of 5×108–5×1012 cm−2. Photoluminescence spectroscopy confirmed the optical activity of the GaN quantum dots in a range of 1011–5×1012 cm−2. The data obtained give an insight to the condensation mechanism of the vapor–liquid–solid process in general, because the GaN quantum dots condense in metastable zinc-blende crystal structure supplied by the substrate, and not in the wurtzite crystal structure expected from free condensation in the droplet.  相似文献   

7.
8.
The effect of incorporation of antimony in GaInNAs films grown by atomic hydrogen-assisted molecular beam epitaxy (MBE) has been investigated. We show that the rate of incorporation of N and In forming GaInNAs do not depend on the Sb beam flux. However, the incorporation of Sb is strongly dependent on the Sb/As2 flux ratio. Introducing a small amount of Sb (<∼1%) significantly improves the photoluminescence (PL) emission efficiency of GaInNAs, but Sb concentration of >1% rapidly degrades the PL intensity, though a large redshift can still be achieved. Therefore, there is an optimum amount of Sb for the growth of low-strained GaInNAs films to improve the overall optical quality.  相似文献   

9.
We have studied the transition from As-doped GaN showing strong blue emission (2.6 eV) at room temperature to the formation of GaN1−xAsx alloys for films grown by plasma-assisted molecular beam epitaxy. We have demonstrated that with increasing N-to-Ga ratio there is first an increase in the intensity of blue emission at about 2.6 eV and then a transition to the growth of GaN1−xAsx alloy films. We present a model based on thermodynamic considerations, which can explain how this might occur.  相似文献   

10.
Undoped and Be-doped InGaAsN layers were grown on GaAs substrates under the same growth conditions by radio frequency plasma-assisted molecular beam epitaxy. Increased tensile strain (Δa/a=3×10−3) was observed for Be-doped InGaAsN layers, compared to undoped InGaAsN layers. The strain is shown to originate from the increase in N composition related to Be incorporation, rather than solely from Be atoms substituting Ga atom sites (BeGa). A possible reason is the high Be–N bond strength, which inhibits the loss of N from the growth surface during epitaxial growth, thereby increasing the N composition in the Be-doped InGaAsN layer.  相似文献   

11.
Eu-doped GaN with various Eu concentrations were grown by gas source molecular beam epitaxy, and their structural and optical properties were investigated. With increasing Eu concentration from 0.1 to 2.2 at%, deterioration of the structural quality was observed by reflection high-energy electron diffraction, atomic force microscopy and X-ray diffraction. Such a deterioration may be caused by an enhancement of island growth and formation of dislocations. On the other hand, room temperature photoluminescence spectra showed red emission at 622 nm due to an intra-atomic f–f transition of Eu3+ ion and Fourier transform infrared spectra indicated an absorption peak at about 0.37 eV, which may be due to a deep defect level. The intensity of the red luminescence and the defect-related absorption peak increased with increasing Eu concentration, and a close correlation in the increasing behavior was observed between them. These results suggest that the deep defect level plays an important role in the radiative transition of Eu3+ ion in GaN and the optical process for the luminescence at 622 nm was discussed with relation to the defect.  相似文献   

12.
GaAs nanowires (NWs) are grown on GaAs (1 1 1) B substrates in a molecular beam epitaxy system, by Au-assisted vapor–liquid–solid growth. We compare the characteristics of NWs elaborated with As2 or As4 molecules. In a wide range of growth temperatures, As4 leads to growth rates twice faster than As2. The shape of the NWs also depends on the arsenic species: with As4, regular rods can be obtained, while pencil-like shape results from growth with As2. From the analysis of the incoming fluxes, which contributes to the NWs formation, we conclude that the diffusion length of Ga adatoms along the NW sidewalls is smaller under As2 flux as compared to that under As4 flux. It follows that As2 flux is favourable to the formation of radial heterostructures, whereas As4 flux is preferable to maintain pure axial growth.  相似文献   

13.
The fabrication and characterisation of AlxGa1−xN (0x0.35) photodetectors grown on Si(1 1 1) by molecular beam epitaxy are described. For low Al contents (<10%), photoconductors show high responsivities (10A/W), a non-linear dependence on optical power and persistent photoconductivity (PPC). For higher Al contents the PPC decreases and the photocurrent becomes linear with optical power. Schottky photodiodes present zero-bias responsivities from 12 to 5 mA/W (x=0−0.35), a UV/visible contrast higher than 103, and a time response of 20 ns, in the same order of magnitude as for devices on sapphire substrate. GaN-based p–n ultraviolet photodiodes on Si(1 1 1) are reported for the first time.  相似文献   

14.
Effects of relaxation of interfacial misfit strain and non-stoichiometry on surface morphology and surface and interfacial structures of epitaxial SrTiO3 (STO) thin films on (0 0 1) Si during initial growth by molecular beam epitaxy (MBE) were investigated. In situ reflection high-energy electron diffraction (RHEED) in combination with X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS) and transmission electron microscopy (TEM) techniques were employed. Relaxation of the interfacial misfit strain between STO and Si as measured by in situ RHEED indicates initial growth is not pseudomorphic, and the interfacial misfit strain is relaxed during and immediately after the first monolayer (ML) deposition. The interfacial strain up to 15 ML results from thermal mismatch strain rather than lattice mismatch strain. Stoichiometry of STO affects not only surface morphology but interfacial structure. We have identified a nanoscale Sr4Ti3O10 second phase at the STO/Si interface in a Sr-rich film.  相似文献   

15.
Substrate temperature rises of over 200 °C have been observed for growth of InN and In-rich InGaN on GaAs substrates. We present a model to show that it is not the narrow bandgap that is responsible for the large temperature rises observed during growth of InN, but the large bulk background carrier concentration. We also show how the substrate temperature rise during growth increases as a function of increasing indium composition and the effects of controlling the substrate temperature on film quality.  相似文献   

16.
The growth of GaN based structures on Si(1 1 0) substrates by molecular beam epitaxy using ammonia as the nitrogen precursor is reported. The structural, optical and electrical properties of such structures are assessed and are quite similar to the ones obtained on Si(1 1 1) in-spite of the very different substrate surface symmetry. A threading dislocation density of 3.7×109 cm−2 is evaluated by transmission electron microscopy, which is in the low range of typical densities obtained on up to 2 μm thick GaN structures grown on Si(1 1 1). To assess the potential of such structure for device realization, AlGaN/GaN high electron mobility transistor and InGaN/GaN light emitting diode heterostructures were grown and their properties are compared with the ones obtained on Si(1 1 1).  相似文献   

17.
Single crystalline ZnO film was grown on (1 1 1) Si substrate through employing an oxidized CrN buffer layer by plasma-assisted molecular beam epitaxy. Single crystalline characteristics were confirmed from in-situ reflection high energy electron diffraction, X-ray pole figure measurement, and transmission electron diffraction pattern, consistently. Epitaxial relationship between ZnO film and Si substrate is determined to be (0 0 0 1)ZnO‖(1 1 1)Si and [1 1 2¯ 0]ZnO‖[0 1 1]Si. Full-width at half-maximums (FWHMs) of (0 0 0 2) and (1 0 1¯ 1) X-ray rocking curves (XRCs) were 1.379° and 3.634°, respectively, which were significantly smaller than the FWHMs (4.532° and 32.8°, respectively) of the ZnO film grown directly on Si (1 1 1) substrate without any buffer. Total dislocation density in the top region of film was estimated to be ∼5×109 cm−2. Most of dislocations have a screw type component, which is different from the general cases of ZnO films with the major threading dislocations with an edge component.  相似文献   

18.
Structural and optical properties of nonpolar a-plane ZnO films grown with different II/VI ratios on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy were investigated. Even by increasing the II/VI ratio across the stoichiometric flux condition a consistent surface morphology of striated stripes along the ZnO 〈0 0 0 1〉 direction without any pit formation was observed, which is contrary to polar c-plane ZnO films. Root mean square surface roughness, full width at half maximum values of X-ray rocking curves, defect densities, and photoluminescence were changed with the II/VI ratio. The sample grown with stoichiometric flux condition showed the lowest value of rms roughness, the smallest threading dislocation and stacking fault densities of ∼4.7×108 cm−2 and ∼9.5×104 cm−1, respectively, and the highest intensity of DoX peak. These results imply that the stoichiometric flux growth condition is suitable to obtain superior structural and optical properties compared to other flux conditions.  相似文献   

19.
20.
The photoluminescence (PL) mechanisms of as-grown GaInNAs/GaAs quantum well were investigated by temperature-dependent PL measurements. An anomalous two-segmented trend in the PL peak energy vs. temperature curve was observed, which has higher and lower temperature-dependent characteristics at low temperature (5–80 K) and high temperature (above 80 K), respectively. The low and high-temperature segments were fitted with two separate Varshni fitting curves, namely Fit_low and Fit_high, respectively, as the low-temperature PL mechanism is dominated by localized PL transitions while the high-temperature PL mechanism is dominated by the e1–hh1 PL transition. Further investigation of the PL efficiency vs. 1/kT relationship suggests that the main localized state is located at 34 meV below the e1 state. It is also found that the temperature (80 K) at which the PL full-width at half-maximum changes from linear trend to almost constant trend correlates well with the temperature at which the PL peak energy vs. temperature curve changes from Fit_low to Fit_high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号