首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antiplane elastic deformation of a homogeneous isotropic prestretched cylindrical body is studied in a nonlinear formulation in actual–state variables under incompressibility conditions, the absence of volume forces, and under constant lateral loading along the generatrix. The boundary–value problem of axial displacement is obtained in Cartesian and complex variables and sufficient ellipticity conditions for this problem are indicated in terms of the elastic potential. The similarity to a plane vortex–free gas flow is established. The problem is solved for Mooney and Rivlin—Sonders materials simulating strong elastic deformations of rubber–like materials. Axisymmetric solutions are considered.  相似文献   

2.
The second and third terms in the asymptotic expansion of the stream function in the nonsimilar problem of the development of a two-dimensional turbulent jet in an unbounded space are found in final form. Results of experimental investigations of free turbulent jets are cited, and the effect of the initial velocity profile on the aerodynamic characteristics of the jet is considered. The problem of the development of a two-dimensional turbulent jet in an unbounded space has been considered in [1–3]. The existing solution is similar, and is valid only at a sufficiently large distance from the slit. Allowance for the finite dimensions of the slit leads to a nonsimilar problem. The papers [4–6] are devoted to the experimental investigation of the free two-dimensional turbulent jet.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 137–142, July–August, 1971.  相似文献   

3.
The flow in turbomachines is currently calculated either on the basis of a single successive solution of an axisymmetric problem (see, for example, [1-A]) and the problem of flow past cascades of blades in a layer of variable thickness [1, 5], or by solution of a quasi-three-dimensional problem [6–8], or on the basis of three-dimensional models of the motion [9–11]. In this paper, we derive equations of a three-dimensional model of the flow of an ideal incompressible fluid for an arbitrary curvilinear system of coordinates based on averaging the equations of motion in the Gromek–Lamb form in the azimuthal direction; the pulsation terms are taken into account in the equations of the quasi-three-dimensional motion. An algorithm for numerical solution of the problem is described. The results of calculations are given and compared with experimental data for flows in the blade passages of an axial pump and a rotating-blade turbine. The obtained results are analyzed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 69–76, March–April, 1991.I thank A. I. Kuzin and A. V. Gol'din for supplying the results of the experimental investigations.  相似文献   

4.
The problem of mass transfer between an isolated bubble and the continuous phase in a pseudofluidized layer is considered, when the rising velocity of the bubble exceeds the pseudofluidization rate. In this case the bubble with the surrounding region, a so-called two-phase system, is surrounded by a surface current impermeable to the liquid [1–3], and the problem reduces to determining the concentration field and the total flow on the material surface. The problem is solved for large and small Peclet numbers by a boundary layer diffusion method and by asymptotic expansion matching.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 42–49, July–August, 1973.  相似文献   

5.
The problem is considered of constructing a semi-infinite axisymmetric body with minimum drag in subsonic flow of an ideal gas. This problem is formulated as the problem of finite-dimensional minimization by prescribing the shape of the body in parametric form and applying the projection method for solving a flow problem.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 108–113, March–April, 1985.  相似文献   

6.
The laminar-turbulent transition zone is investigated for a broad class of jet flows. The problem is considered in terms of the inviscid model. The solution of the initial-boundary value problem for three-dimensional unsteady Euler equations is found by the Bubnov-Galerkin method using the generalized Rayleigh approach [1–4]. The occurrence, subsequent nonlinear evolution and interaction of two-dimensional wave disturbances are studied, together with their secondary instability with respect to three-dimensional disturbances.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 8–19, September–October, 1985.  相似文献   

7.
Corrosion crack nucleation and growth are modelled as a moving boundary problem. The model incorporates three physical processes––dissolution, passivation and straining––into a continuum mechanical framework. The dissolution triggers surface advance; the passivation restrains the access of the environment to bare metal; the deformation causes for passivity breakdown. Plane cracks nucleating from surface pits in an elastic–plastic material body under fatigue load are considered. The problem is solved using a FEM program and a moving boundary tracking procedure. The model simulates how cracks form and grow in a single continuous course. The geometry of the developed cracks is found independent of the initial pit size. Plasticity is found to influence the curvature at the tip of the nucleated corrosion cracks. The most important evolution length parameter, the width of the corrosion crack, is found to depend on the size constraints of the tracking procedure. It is concluded that the model is deficient for determining all length scales observed in reality. Physical processes to be considered in an advanced model are proposed and discussed.  相似文献   

8.
The problem of rigid-body motion in an unsteady gas flow is considered using a flow model [1] in which the motion of the body is described by a system of integrodifferential equations. The case in which among the characteristic exponents of the fundamental system of solutions of the linearized equations there are not only negative but also one zero exponent is analyzed. The instability conditions established with respect to the second-order terms on the right sides of the equations are noted. The problem may be regarded as a generalization of the problem of the lateral instability of an airplane in the critical case solved by Chetaev [2], pp. 407–408.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 18–22, May–June, 1989.  相似文献   

9.
An axisymmetric dynamic thermoviscoelastic problem is formulated with allowance for the coupling of mechanical and thermal fields. The behavior of the material is described by the Bodner–Partom model. A technique for numerical solution of the problem is developed. The laws governing the stress–strain state and the temperature field of a circular disk under forced flexural vibrations are studied  相似文献   

10.
The method of matched asymptotic expansions is used to investigate the problem of supersonic perfect-gas flow over a semi-infinite surface with longitudinal ribbing formed by imposing small transverse harmonic perturbations on a flat plate. The ratio of the maximum amplitude of the surface perturbations to the thickness of the boundary layer is of the order of Re–1/4. The problem is solved with allowance for four terms of the expansion.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.1, pp. 146–156, January–February, 1993.  相似文献   

11.
An asymmetric quasistationary problem for a prestressed half-plane with harmonic and Bartenev–Khazanovich potentials is solved based of the linearized theory of elasticity. The Mehler–Fock integral transform is used to solve the differential equations that describe the stress–strain state of the half-plane. The dependences of the normal and tangential stresses and stress intensity factors on the elongation are plotted  相似文献   

12.
An explicit solution is found for the problem of uniform horizontal flow of a two-layer fluid of infinite depth past a circular cylinder. The cylinder axis is perpendicular to the flow. The problem is solved within a linear formulation. The solution of the problem is expressed in the form of rapidly converging series with coefficients determined from a recurrence relation. The first seven terms of the series yield the values of the hydrodynamic loads with a relative accuracy of 10–6. The results are in good agreement with the known values for similar problems in a homogeneous fluid. Tables of the lift and wave drag are given for homogeneous and two-layer fluids.Novosibirsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 91–97, January–February, 1996.  相似文献   

13.
The problem of flow past a permeable cylinder at low Reynolds numbers is of interest for the solution of a number of problems in chemical technology in, for example, the design of porous electrodes and porous catalysts and in the calculation of nonstationary filtration of aerosols by fibrous filters. In the present paper, we solve the problem of transverse flow of a viscous fluid past a continuous cylinder in a porous shell and, in particular, in the case of a porous cylinder under conditions of constrained flow (system of cylinders) and an isolated cylinder at arbitrary permeability. The analogous problem of Stokes flow past permeable spheres has been solved in a number of papers [1–3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 122–124, November–December, 1979.  相似文献   

14.
The problem of determining the frequencies and forms of small natural oscillations of an ideal liquid in a cylindrical vessel under conditions close to weightlessness is examined. It is assumed that a weak homogeneous gravitational field acts parallel to the vertical generatrix forming the cylinder. In contrast to [1], where only the first antisymmetric oscillation frequency is found for a semiinfinite cylindrical vessel, the frequencies of several axiosymmetric, antisymmetric, etc. oscillations are obtained as functions of the gravitational-field intensity and other parameters of the problem. The Ritz method is employed for two different variations of the problem, equivalent to that of oscillations of an ideal liquid under conditions of weightlessness [1–5].Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 3–13, March–April, 1973.  相似文献   

15.
A conjugation problem for radiative–convective heat transfer in a turbulent flow of a high–temperature gas—particle medium around a thermally thin plate is considered. The plate experiences intense heating from an outside source that emits radiation in a restricted spectral range. Unsteady temperature fields and heat–flux distributions along the plate are calculated. The results permit prediction of the effect of the type and concentration of particles on the dynamics of the thermal state of both the medium in the boundary layer and the plate itself under conditions of its outside heating by a high–temperature source of radiation.  相似文献   

16.
We study critical points of a Ginzburg–Landau type functional with an attractive–repulsive–attractive nonlocal interaction. Using an appropriate scaling and -convergence method we reduce the problem to a finite dimensional one. In contrast to a similar problem with just an attractive–repulsive interaction, we obtain a richer set of solutions. The soliton-stripe patterns appear as skewed local minimizers of the free energy, and disappear or become symmetric as the number of interfaces reaches a certain threshold. We also show how other critical points can be constructed using results of the diblock copolymer problem.  相似文献   

17.
The authors consider problems connected with stability [1–3] and the nonlinear development of perturbations in a plane mixing layer [4–7]. Attention is principally given to the problem of the nonlinear interaction of two-dimensional and three-dimensional perturbations [6, 7], and also to developing the corresponding method of numerical analysis based on the application to problems in the theory of hydrodynamic stability of the Bubnov—Galerkin method [8–14].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhldkosti i Gaza, No. 1, pp. 10–18, January–February, 1985.  相似文献   

18.
The nonlinear problem of cavitation flow around a plate by a stream of heavy liquid is investigated in precise formulation; the plate is located on the horizontal floor of a channel when the gravity vector is directed perpendicular to the wall of the channel. Two flow systems are considered-Ryabushinskii's and Kuznetsov's system [1]. This problem was investigated in linear formulation in [2], Similar problems were considered earlier in [3–7] for unrestricted flow. Below, on the basis of a method proposed by Birkhoff [8, 9], all the principal hydrodynamic and geometric characteristics are calculated for the problem being considered.Translated from Ivestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 3, pp. 3–9, May–June, 1973.  相似文献   

19.
Results of the numerical solution of the problem of one-dimensional hurling of shells by hollow explosive charges are elucidated. The results of the numerical solution are compared with asymptotic formulas. Numerous domestic and foreign papers have been devoted to the question of hurling shells by explosive charges. A numerical solution of the problem of convergence of a ring to the center under the effect of detonation products is presented in [1–3]. The problem of hurling a shell by a hollow explosive charge with an internal lining is considered in [4]; the solution of the problem of hurling a shell by a hollow explosive charge without the cavity lining is presented in [5] on the basis of the energy-balance equations; however, the complete picture of the processes occurring in the detonation products is not considered.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 161–166, May–June, 1976.  相似文献   

20.
The problem of the mass, thermal and dynamic interaction between a bubble containing a soluble gas and a liquid is considered. It is shown that this problem can be reduced to the problem of the behavior of a vapor bubble with phase transitions investigated in detail in [1–3]. Expressions are obtained for the rate of decay of the radially symmetric oscillations of the bubbles due to the solubility of the gas in the liquid. The effective coefficients of mass transfer between the radially pulsating bubbles and the liquid are determined. A numerical solution is obtained for the problem of the radial motion of a bubble created by a sudden change of pressure in the liquid which, in particular, corresponds to the behavior of the bubbles behind the shock front when a shock wave enters a bubble screen.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 52–59, November–December, 1985.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号