首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of α-diazo ketones 1a,b with 9H-fluorene-9-thione ( 2f ) in THF at room temperature yielded the symmetrical 1,3-dithiolanes 7a,b , whereas 1b and 2,2,4,4-tetramethylcyclobutane-1,3-dithione ( 2d ) in THF at 60° led to a mixture of two stereoisomeric 1,3-oxathiole derivatives cis- and trans- 9a (Scheme 2). With 2-diazo-1,2-diphenylethanone ( 1c ), thio ketones 2a–d as well as 1,3-thiazole-5(4H)-thione 2g reacted to give 1,3-oxathiole derivatives exclusively (Schemes 3 and 4). As the reactions with 1c were more sluggish than those with 1a,b , they were catalyzed either by the addition of LiClO4 or by Rh2(OAc)4. In the case of 2d in THF/LiClO4 at room temperature, a mixture of the monoadduct 4d and the stereoisomeric bis-adducts cis- and trans- 9b was formed. Monoadduct 4d could be transformed to cis- and trans- 9b by treatment with 1c in the presence of Rh2(OAc)4 (Scheme 4). Xanthione ( 2e ) and 1c in THF at room temperature reacted only when catalyzed with Rh2(OAc)4, and, in contrast to the previous reactions, the benzoyl-substituted thiirane derivative 5a was the sole product (Scheme 4). Both types of reaction were observed with α-diazo amides 1d,e (Schemes 5–7). It is worth mentioning that formation of 1,3-oxathiole or thiirane is not only dependent on the type of the carbonyl compound 2 but also on the α-diazo amide. In the case of 1d and thioxocyclobutanone 2c in THF at room temperature, the primary cycloadduct 12 was the main product. Heating the mixture to 60°, 1,3-oxathiole 10d as well as the spirocyclic thiirane-carboxamide 11b were formed. Thiirane-carboxamides 11d–g were desulfurized with (Me2N)3P in THF at 60°, yielding the corresponding acrylamide derivatives (Scheme 7). All reactions are rationalized by a mechanism via initial formation of acyl-substituted thiocarbonyl ylides which undergo either a 1,5-dipolar electrocyclization to give 1,3-oxathiole derivatives or a 1,3-dipolar electrocyclization to yield thiiranes. Only in the case of the most reactive 9H-fluorene-9-thione ( 2f ) is the thiocarbonyl ylide trapped by a second molecule of 2f to give 1,3-dithiolane derivatives by a 1,3-dipolar cycloaddition.  相似文献   

2.
Dimethyl diazomalonate ( 4 ) and thiobenzophenone ( 2a ) do not react in toluene even after warming to 50°. After addition of catalytic amounts of Rh2(OAc)4, a smooth reaction under N2 evolution afforded a mixture of thiiranedicarboxylate 5 and (diphenylmethylidene)malonate 6 (Scheme 2). A reaction mechanism via an intermediate ‘thiocarbonyl ylide’ 7 , formed by the addition of the carbenoid species 8 to the S-atom of 2a , is plausible. Similar reactions were carried out with 9H-xanthene-9-thione ( 2b ), 9H-thioxanthene-9-thione ( 2c , Scheme 4), and 1,3-thiazole-5(4H)-thione 18 (Scheme 6). In the cases of 2b and 2c , spirocyclic 1,3-dithiolanetetracarboxylates 14a and 14b , respectively, were obtained as the third product. Reaction mechanisms for their formation are proposed in Scheme 5: S-transfer from intermediate thiirane 12 to the carbenoid species yielded thioxomalonate 15 which underwent a 1,3-dipolar cycloaddition with ‘thiocarbonyl ylide’ 16 . An alternative is the formation of ‘thiocarbonyl ylide’ 17 via carbene addition to 15 , followed by 1,3-dipolar cycloaddition with 2b and 2c , respectively.  相似文献   

3.
Synthesis of Trifluoromethyl-Substituted Sulfur Heterocycles Using 3,3,3-Trifluoropyruvic-Acid Derivatives The reaction of methyl 3,3,3-trifluoropyruvate ( 1 ) with 2,5-dihydro-1,3,4-thiadiazoles 4a, b in benzene at 45° yielded the corresponding methyl 5-(trifluoromethyl)-1,3-oxathiolane-5-carboxylates 5a, b (Scheme 1) via a regioselective 1,3-dipolar cycloaddition of an intermediate ‘thiocarbonyl ylide’ of type 3 . With methyl pyruvate, 4a reacted similarly to give 6 in good yield. Methyl 2-diazo-3,3,3-trifluoropropanoate ( 2 ) and thiobenzophenone ( 7a ) in toluene underwent a reaction at 50°; the only product detected in the reaction mixture was thiirane 8a (Scheme 2). With the less reactive thiocarbonyl compounds 9H-xanthene-9-thione ( 7b ) and 9H-thioxanthene-9-thione ( 7c ) as well as with 1,3-thiazole-5(4H)-thione 12 , diazo compound 2 reacted only in the presence of catalytic amounts of Rh2(OAc)4. In the cases of 7a and 7b , thiiranes 8b and 8c , respectively, were the sole products (Scheme 3). The crystal struture of 8c has been established by X-ray crystallography (Fig.). In the reaction with 12 , desulfurization of the primarily formed thiirane 14 gave the methyl 3,3,3-trifluoro-2-(4,5-dihydro-1,3-thiazol-5-ylidene)propanoates (E)-and (Z)- 15 (Scheme 4). A mechanism of the Rh-catalyzed reaction via a carbene addition to the thiocarbonyl S-atom is proposed in Scheme 5.  相似文献   

4.
1,5-Dipolar Electrocyclization of Acyl-Substituted ‘Thiocarbonyl-ylides’ to 1,3-Oxathioles The reaction of α-diazoketones 15a, b with 4,4-disubstituted 1,3-thiazole-5(4H)-thiones 6 (Scheme 3), adamantanethione ( 17 ), 2,2,4,4-tetramethyl-3-thioxocyclobutanone ( 19 ; Scheme 4), and thiobenzophenone ( 22 ; Scheme 5), respectively, at 50–90° gave the corresponding 1,3-oxathiole derivatives as the sole products in high yields. This reaction opens a convenient access to this type of five-membered heterocycles. The structures of three of the products, namely 16c, 16f , and 20b , were established by X-ray crystallography. The key-step of the proposed reaction mechanism is a 1,5-dipolar electrocyclization of an acyl-substituted ‘thiocarbonyl-ylide’ (cf. Scheme 6). The analogous reaction of 15a, b with 9H-xanthen-9-thione ( 24a ) and 9H-thioxanthen-9-thione ( 24b ) yielded α,β-unsaturated ketones of type 25 (Scheme 5). The structures of 25a and 25c were also established by X-ray crystallography. The formation of 25 proceeds via a 1,3-dipolar electrocyclization to a thiirane intermediate (Scheme 6) and desulfurization. From the reaction of 15a with 24b in THF at 50°, the intermediate 26 (Scheme 5) was isolated. In the crude mixtures of the reactions of 15a with 17 and 19 , a minor product containing a CHO group was observed by IR and NMR spectroscopy. In the case of 19 , this side product could be isolated and was characterized by X-ray crystallography to be 21 (Scheme 4). It was shown that 21 is formed – in relatively low yield – from 20a . Formally, the transformation is an oxidative cleavage of the C?C bond, but the reaction mechanism is still not known.  相似文献   

5.
1,3-Dipolar Cycloadditions of a Carhonyl-ylide with 1,3-Thiazole-5(4H)-thiones and Thioketones Inp-xylene at 150°, 3-phenyloxirane-2,2-dicarbonitrile ( 4b ) and 2-phenyl-3-thia-1-azaspiro[4.4]non-1-ene-4-thione ( 1a ) gave the three 1:1 adduets trans- 3a , cis- 3a , and 13a in 61, 21, and 3% yield, respectively (Scheme 3). The stereoisomers trans- 3a and cis- 3a are the products of a regioselective 1,3-dipolar cycloaddition of carbonylylide 2b , generated thermally by an electrocyclic ring opening of 4b (Scheme 6), and the C?S group of 1a . Surprisingly, 13a proved not to be a regioisomeric cycloadduct of 1a and 2b , but an isomer formed via cleavage of the O? C(3) bond of the oxirane 4b . A reaction mechanism rationalizing the formation of 13a is proposed in Scheme 6. Analogous results were obtained from the reaction of 4b and 4,4-dimethyl-2-phenyl-1,3-thiazole-5 (4H)-thione ( 1b , Scheme 3). The thermolysis of 4b in p-xylene at 130° in the presence of adamantine–thione ( 10 ) led to two isomeric 1:1 adducts 15 and 16 in a ratio of ca. 2:1, however, in low yield (Scheme 4). Most likely the products are again formed viathe two competing reaction mechanisms depicted in Scheme 6. The analogous reactions of 4b with 2,2,4,4-tetramethylcyclobutane-1,3-thione ( 11 ) and 9H-xanthene-9-thione ( 12 ) yielded a single 1:1 adduct in each case (Schemes). In the former case, spirocyclic 1,3-oxathiolane 17 , the product of the 1,3-dipolar cycloaddition with 2a corresponding to 3a , was isolated in only 11 % yield. It is remarkable that no 2:1 adduct was formed even in the presence of an excess of 4b. In contrast, 4b and 12 reacted smoothly to give 18 in 81 % yield; no cycloadduct of the carbonylylide 2a could be detected. The structures of cis- 3a , 13a , 15 , and 18 , as well as the structure of 14 , which is a derivative of trans- 3a , have been established by X-ray crystallography (Figs. 1–3, Table).  相似文献   

6.
The reactions of 1,3‐dioxolane‐2‐thione ( 3 ) with (S)‐2‐methyloxirane ((S)‐ 1 ) and with (R)‐2‐phenyloxirane ((R)‐ 2 ) in the presence of SiO2 in anhydrous dichloroalkanes led to the optically active spirocyclic 1,3‐oxathiolanes 8 with Me at C(7) and 9 with Ph at C(8), respectively (Schemes 2 and 3). The analogous reaction of 1,3‐dimethylimidazolidine‐2‐thione ( 4a ) with (R)‐ 2 yielded stereoselectively (S)‐2‐phenylthiirane ((S)‐ 10 ) in 83% yield and 97% ee together with 1,3‐dimethylimidazolidin‐2‐one ( 11a ). In the cases of 3‐phenyloxazolidine‐2‐thione ( 4b ) and 3‐phenylthiazolidine‐2‐thione ( 4c ), the reaction with (RS)‐ 2 yielded the racemic thiirane (RS)‐ 10 , and the corresponding carbonyl compounds 11b and 11c (Scheme 4 and Table 1). The analogous reaction of 4a with 1,2‐epoxycyclohexane (= 7‐oxabicyclo[4.1.0]heptane; 7 ) afforded thiirane 12 and the corresponding carbonyl compound 11a (Scheme 5). On the other hand, the BF3‐catalyzed reaction of imidazolidine‐2‐thione ( 5 ) with (RS)‐ 2 yielded the imidazolidine‐2‐thione derivative 13 almost quantitatively (Scheme 6). In a refluxing xylene solution, 1,3‐diacetylimidazolidine‐2‐thione ( 6 ) and (RS)‐ 2 reacted to give two imidazolidine‐2‐thione derivatives, 13 and 14 (Scheme 7). The structures of 13 and 14 were established by X‐ray crystallography (Fig.).  相似文献   

7.
The reaction of 2,2,4,4‐tetramethyl‐3‐thioxocyclobutanone ( 1 ) with cis‐1‐alkyl‐2,3‐diphenylaziridines 5 in boiling toluene yielded the expected trans‐configured spirocyclic 1,3‐thiazolidines 6 (Scheme 1). Analogously, dimethyl trans‐1‐(4‐methoxyphenyl)aziridine‐2,3‐dicarboxylate (trans‐ 7 ) reacted with 1 and the corresponding dithione 2 , respectively, to give spirocyclic 1,3‐thiazolidine‐2,4‐dicarboxylates 8 (Scheme 2). However, mixtures of cis‐ and trans‐derivatives were obtained in these cases. Unexpectedly, the reaction of 1 with dimethyl 1,3‐diphenylaziridine‐2,2‐dicarboxylate ( 11 ) led to a mixture of the cycloadduct 13 and 5‐(isopropylidene)‐4‐phenyl‐1,3‐thiazolidine‐2,2‐dicarboxylate ( 14 ), a formal cycloadduct of azomethine ylide 12 with dimethylthioketene (Scheme 3). The regioisomeric adduct 16 was obtained from the reaction between 2 and 11 . The structures of 6b , cis‐ 8a , cis‐ 8b, 10 , and 16 have been established by X‐ray crystallography.  相似文献   

8.
Reaction of 3-(Dimethylamino)-2H-azirines with 1,3-Oxazolidine-2-thione to 3-(2-Hydroxyethyl)-2- thiohydantoins The reaction of 3-(dimethylamino)-2H-azirines 1 and 1,3-oxazolidine-2-thione ( 6 ), in MeCN at room temperature, yields, after hydrolytic workup, 3-(2-hydroxyethyl)-2-thiohydantoins 7 (Scheme 2). In the case of the spirocyclic 1c , crystallization of the crude reaction mixture leads to spiro [cyclopentane-1, 7′(7′aH)-imidazo [4, 3-b] oxazole] -5′-thione 8c . The mechanism is discussed.  相似文献   

9.
The reaction of thiobenzophenone (= diphenylmethanethione; 8a ) or 9H-fluorene-9-thione ( 8b ) and methyl fumarate ( 9 ) in excess PhN3 at 80° yields a mixture of diastereoisomeric thiiranes 10 and 11 (Scheme 1). A mechanism involving the initial formation of 1-phenyl-4, 5-dihydro-1H-1, 2, 3-triazole-4, 5-dicarboxylate 12 by 1, 3-dipolar cycloaddition of PhN3 and 9 is proposed in Scheme 2. The diazo compound 13 , which is in equilibrium with 12 , undergoes a further 1, 3-dipolar cycloaddition with thioketones 8 to give 2, 5-dihydro-1, 3, 4-thiadiazoles 14 . Elimination of N2 yields the thiocarbonyl ylide 15 which cyclizes to the corresponding thiirane. Desulfurization of the thiiranes 10 and 11 with hexamethylphosphorous triamide leads to the olefinic compounds 16 (Scheme 3). The crystal structures of 10a , 11a , and 16b were determined.  相似文献   

10.
Reaction of Ethyl Diazoacetate with 1,3-Thiazole-5(4H)-thiones Reaction of ethyl diazoacetate ( 2a ) and 1,3-thiazole-5(4H)-thiones 1a,b in Et2O at room temperature leads to a complex mixture of the products 5–9 (Scheme 2). Without solvent, 1a and 2a react to give 10a in addition to 5a–9a . In Et2O in the presence of aniline, reaction of 1a,b with 2a affords the ethyl 1,3,4-thiadiazole-2-carboxylate 10a and 10b , respectively, as major products. The structures of the unexpected products 6a, 7a , and 10a have been established by X-ray crystallography. Ethyl 4H-1,3-thiazine-carboxylate 8b was transformed into ethyl 7H-thieno[2,3-e][1,3]thiazine-carboxylate 11 (Scheme 3) by treatment with aqueous NaOH or during chromatography. The structure of the latter has also been established by X-ray crystallography. In the presence of thiols and alcohols, the reaction of 1a and 2a yields mainly adducts of type 12 (Scheme 4), compounds 5a,7a , and 9a being by-products (Table 1). Reaction mechanisms for the formation of the isolated products are delineated in Schemes 4–7: the primary cycloadduct 3 of the diazo compound and the C?S bond of 1 undergoes a base-catalyzed ring opening of the 1,3-thiazole-ring to give 10 . In the absence of a base, elimination of N2 yields the thiocarbonyl ylide A ′, which is trapped by nucleophiles to give 12 . Trapping of A ′, by H2O yields 1,3-thiazole-5(4H)-one 9 and ethyl mercaptoacetate, which is also a trapping agent for A ′, yielding the diester 7 . The formation of products 6 and 8 can be explained again via trapping of thiocarbonyl ylide A ′, either by thiirane C (Scheme 6) or by 2a (Scheme 7). The latter adduct F yields 8 via a Demjanoff-Tiffeneau-type ring expansion of a 1,3-thiazole to give the 1,3-thiazine.  相似文献   

11.
Heating of a mixture of N,N′-(thiocarbonyl)diimidazole (= 1,1′-(carbonothioyl)bis[1H-imidazole]; 1 ) and 2,5-dihydro-1,3,4-thiadiazole 2a or 2b gave the 1,3-dithiolanes 4a and 4b , respectively, via a regiospecific 1,3-dipolar cycloaddition of the corresponding ‘thiocarbonyl methanides’ 3a , b onto the C?S group of 1 (Schemes 1 and 2). The adamantane derivative 4b was not stable in the presence of 1H-imidazole and during chromatographic workup. The isolated 1,3-dithiole 5 is the product of a base-catalyzed elimination of 1H-imidazole from the initial cycloadduct 4b . The formation of the S,N-acetal 6 can be rationalized by a protonation of the ‘thiocarbonyl ylide’ 3b followed by a nucleophilic addition of 1H-imidazole. With the diazo compounds 8a–e (Scheme 3) 1 underwent a regiospecific 1,3-dipolar cycloaddition to give the corresponding 2,5-dihydro-1,3,4-thiadiazole derivatives 9 , which spontaneously eliminated 1H-imidazole to yield (1H-imidazol-1-yl)-1,3,4-thiadiazoles 10 . The structures of 10a and 10d were established by X-ray crystallography. In the case of diazodiphenylmethane ( 8f ), the initial cycloadduct 9f decomposed via a ‘twofold extrusion’ of N2 and S to give 1,1′-(2,2-diphenylethenylidene)bis[1H-imidazole] ( 11 ; Scheme 3).  相似文献   

12.
Ring Opening of Sterically Crowded Spirocyclic 2, 5-Dihydro-l, 3, 4-thiadiazoles by Cycloaliphatic Secondary Amines At room temperature, the spirocyclic 2, 5-dihydro-l, 3, 4-thiadiazole 3 reacted with cyclic secondary amines 6 via ring opening to give N-alkylidene-hydrazones of type 7 (Scheme 2). A reaction mechanism via a base-catalyzed transformation of the dihydrothiadiazole ring to the corresponding thiolate 19 and the intermediate thioaldehyde 21 is proposed in Scheme 6. An analogous reaction occurred with the mixture of the dispiro compounds 4/5 and morpholine ( 6a ) or azetidine ( 6d ), leading to a mixture of isomeric dihydrazones 8 and 9 (Scheme 3). The structure of the symmetrical isomer 8a was established by X-ray crystallography. In addition to 8a and 9a , the thiirane lOa (Scheme 3) was isolated as a minor product.  相似文献   

13.
Reaction of Di(tert-butyl)- and Diphenyldiazomethane and 1,3-Thiazole-5(4H)-thiones: Isolation and Crystal Structure of the Primary Cycloadduct Reactions of diazo compounds with C?S bonds proceed via the formation of thiocarbonyl ylides, which, under the reaction conditions, undergo either 1,3-dipolar cycloadditions or electrocyclic ring closer to thiiranes (Scheme 1). With the sterically hindered di(tert-butyl)diazomethane ( 2c ), 1,3-thiazole-5(4H)-thiones 1 react to give spirocyclic 2,5-dihydro-1,3,4-thiadiazoles 3 (Scheme 2). These adducts are stable in solution at ?20°, and they could be isolated in crystalline form. The structure of 3c was established by X-ray crystallography. In CDCl3 solution at room temperature, a cycloreversion occurs, and the adducts of type 3 are in an equilibrium with 1 and 2c . In contrast, the reaction of 1 with diphenyldiazomethane ( 2d ) gave spirocyclic thiiranes 4 as the only product in high yield (Scheme 3). The crystal structure of 4b was also determined by X-ray analysis. The desulfurization of compounds 4 to 4,5-dihydro-5-(diphenylmethylidene)-1,3-thiazoles 5 was achieved by treating 4 with triphenylphosphine in boiling THF. The crystal structure of 5f is shown.  相似文献   

14.
The reactions of the enolizable thioketone (1R,4R)‐thiocamphor (=(1R,4R)‐1,7,7‐trimethylbicyclo[2.2.1]heptane‐2‐thione; 1 ) with (S)‐2‐methyloxirane ( 2 ) in the presence of a Lewis acid such as SnCl4 or SiO2 in anhydrous CH2Cl2 led to two diastereoisomeric spirocyclic 1,3‐oxathiolanes 3 and 4 with the Me group at C(5′), as well as the isomeric β‐hydroxy thioether 5 (Scheme 2). The analogous reactions of 1 with (RS)‐, (R)‐, and (S)‐2‐phenyloxirane ( 7 ) yielded two isomeric spirocyclic 1,3‐oxathiolanes 8 and 9 with Ph at C(4′), an additional isomer 13 bearing the Ph group at C(5′), and three isomeric β‐hydroxy thioethers 10, 11 , and 12 (Scheme 4). In the presence of HCl, the β‐hydroxy thioethers 5, 10, 11 , and 12 isomerized to the corresponding 1,3‐oxathiolanes 3 and 4 (Scheme 3), and 8, 9 , and 13 , respectively (Scheme 5). Under similar conditions, an epimerization of 3, 8 , and 9 occurred to yield the corresponding diastereoisomers 4, 14 , and 15 , respectively (Schemes 3 and 6). The structures of 9 and 15 were confirmed by X‐ray crystallography (Figs. 1 and 2). These results show that the Lewis acid‐catalyzed addition of oxiranes to enolizable thioketones proceeds with high regio‐ and stereoselectivity via an Sn 2‐type mechanism.  相似文献   

15.
Reaction of 3-(Dimethylamino)-2H-azirines with 1,3-Thiazolidine-2-thione Reaction of 3-(dimethylamino)-2H-azirines 1 and 1,3-thiazolidine-2-thione ( 6 ) in MeCN at room temperature leads to a mixture of perhydroimidazo[4,3-b]thiazole-5-thiones 7 and N-[1-(4,5-dihydro-1,3-thiazol-2-yl)alkyl]-N′,N′-dimethylthioureas 8 (Scheme 2), whereas, in i-PrOH at ca. 60°, 8 is the only product (Scheme 4). It has been shown that, in polar solvents or under Me2NH catalysis, the primarily formed 7 isomerizes to 8 (Scheme 4). The hydrolysis of 7 and 8 leads to the same 2-thiohydantoine 9 (Scheme 3 and 5). The structure of 7a, 8c , and 9b has been established by X-ray crystallography (Chapt. 4). Reaction mechanisms for the formation and the hydrolysis of 7 and 8 are suggested.  相似文献   

16.
The reactions of 1,1,3,3-tetramethyl-8-thia-5,6-diazaspirol[3.4]oct-5-en-2-one ( 1a ) with imidazole-2-thiones 3 and pyrimidine-2(1H)-thione ( 6 ) in CHCl3 at 40 – 50° yield 2,2,4,4-tetramethylcyclobutanone dithioacetals of type 4 and 7 , respectively, by interception of the intermediate thiocarbonyl ylide 2a (Scheme 2). Thiirane 5 is formed as a minor product by 1,3-dipolar electrocyclization of 2a . When thioacetamide ( 8a ) and thiobenzamide ( 8b ) are used as trapping reagents, the primary adduct 10 undergoes a spontaneous cyclization by intramolecular nucleophilic addition of the imino group at the carbonyl group to yield bicyclic products of type 9 . The structure of 9a has been established by X-ray crystallography.  相似文献   

17.
1,3-Dipolar Cycloadditions of 2-(Benzonitrilio)-2-propanide with 4,4-Dimethyl-2-phenyl-2-thiazolin-5-thione and Carbon Disulfide Irradiation of 2,2-dimethyl-3-phenyl-2H-azirine ( 11 ) in the presence of 4,4-dimethyl-2-phenyl-2-thiazolin-5-thione ( 7 ) yields a mixture of the three (1:1)-ad-ducts 8 , 12 and 13 (Schemes 3 and 6). The formation of 8 and 12 can be explained by 1,3-dipolar cycloaddition of 2-(benzonitrilio)-2-propanide ( 1b ) to the C, S-double bond of 7. Photochemical isomerization of 12 leads to the third isomer 13 (Schemes 3 and 7). Photolysis of the azirine 11 in the presence of carbon disulfide gives a mixture of two (2:l)-adducts, namely 12 and 13 (Scheme 4). A reaction mechanism via the intermediate formation of the 3-thiazolin-5-thione b is postulated. The structure of the heterocyclic spiro compound 13 has been established by single-crystal X-ray structure determination (cf. Fig. 1 and 2).  相似文献   

18.
Diphenyl phosphorazidate (DPPA) was used as the azide source in a one-pot synthesis of 2,2-disubstituted 3-amino-2H-azirines 1 (Scheme 1). The reaction with lithium enolates of amides of type 2 , bearing two substituents at C(2), proceeded smoothly in THF at 0°; keteniminium azides C and azidoenamines D are likely intermediates. Under analogous reaction conditions, DPPA and amides of type 3 with only one substituent at C(2) gave 2-diazoamides 5 in fair-to-good yield (Scheme 2). The corresponding 2-diazo derivatives 6–8 were formed in low yield by treatment of the lithium enolates of N,N-dimethyl-2-phenylacetamide, methyl 2-phenylacetate, and benzyl phenyl ketone, respectively, with DPPA. Thermolysis of 2-diazo-N-methyl-N-phenylcarboxamides 5a and 5b yielded 3-substituted 1,3-dihydro-N-methyl-2H-indol-2-ones 9a and 9b , respectively (Scheme 3). The diazo compounds 5–8 reacted with 1,3-thiazole-5 (4H)-thiones 10 and thiobenzophenone ( 13 ) to give 6-oxa-1,9-dithia-3-azaspiro[4.4]nona-2,7-dienes 11 (Scheme 4) and thiirane-2-carboxylic acid derivatives 14 (Scheme 5), respectively. In analogy to previously described reactions, a mechanism via 1,3-dipolar cycloaddition, leading to 2,5-dihydro-1,3,4-thiadiazoles, and elimination of N2 to give the ‘thiocarbonyl ylides’ of type H or K is proposed. These dipolar intermediates with a conjugated C?O group then undergo either a 1,5-dipolar electrocyclization to give spirohetrocycles 11 or a 1,3-dipolar electrocyclization to thiiranes 14 .  相似文献   

19.
The 1,3‐dipolar cycloaddition of 2,2,4,4‐tetramethyl‐3‐thioxocyclobutanone S‐methylide ( 2a ), generated in situ by thermal extrusion of N2 from the corresponding 2,5‐dihydro‐1,3,4‐thiadiazole 1a , with electron‐deficient acetylenic compounds yields spirocyclic 2,5‐dihydrothiophene derivatives of type 4 (Scheme 2). Mixtures of diastereoisomers are obtained in the case of propiolates. The strained cyclooctyne also undergoes smooth cycloadditions with thioketone S‐methylides (Scheme 3). Under acidic conditions, the spirocyclic products of type 4 and 6a isomerize, via opening of the cyclobutanone ring and aromatization of the five‐membered ring, to thiophene derivatives of type 7 (Scheme 4).  相似文献   

20.
The thermal reaction of 1‐substituted 2,3‐diphenylaziridines 2 with thiobenzophenone ( 6a ) and 9H‐fluorene‐9‐thione ( 6b ) led to the corresponding 1,3‐thiazolidines (Scheme 2). Whereas the cis‐disubstituted aziridines and 6a yielded only trans‐2,4,5,5‐tetraphenyl‐1,3‐thiazolidines of type 7 , the analogous reaction with 6b gave a mixture of trans‐ and cis‐2,4‐diphenyl‐1,3‐thiazolidines 7 and 8 . During chromatography on SiO2, the trans‐configured spiro[9H‐fluorene‐9,5′‐[1,3]thiazolidines] 7c and 7d isomerized to the cis‐isomers. The substituent at N(1) of the aziridine influences the reaction rate significantly, i.e., the more sterically demanding the substituent the slower the reaction. The reaction of cis‐2,3‐diphenylaziridines 2 with dimethyl azodicarboxylate ( 9 ) and dimethyl acetylenedicarboxylate ( 11 ) gave the trans‐cycloadducts 10 and 12 , respectively (Schemes 3 and 4). In the latter case, a partial dehydrogenation led to the corresponding pyrroles. Two stereoisomeric cycloadducts, 15 and 16 , with a trans‐relationship of the Ph groups were obtained from the reaction with dimethyl fumarate ( 14 ; Scheme 5); with dimethyl maleate ( 17 ), the expected cycloadduct 18 together with the 2,3‐dihydropyrrole 19 was obtained (Scheme 6). The structures of the cycloadducts 7b, 8a, 15b , and 16b were established by X‐ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号