共查询到20条相似文献,搜索用时 0 毫秒
1.
运用长距离显微成像系统与锁相积分拍摄技术相结合的方法, 拍到了单个造影剂微泡在两种不同频率和不同声压下的周期性振动图像. 根据这些图像得到了微泡直径的实验数据, 并分别用Hoff模型和Rayleigh-Plesset模型对数据进行拟合, 并对数据进行了频谱分析. 结果表明:Hoff模型对实验数据的拟合结果优于Rayleigh-Plesset模型的拟合结果; 二次谐波的相对强度随着声压幅度的升高而增大.
关键词:
包膜微泡
锁相积分拍摄方法
频谱 相似文献
2.
Cavitation bubbles have been recognized as being essential to many applications of ultrasound. Temporal evolution and spatial distribution of cavitation bubble clouds induced by a focused ultrasound transducer of 1.2 MHz center frequency are investigated by high-speed photography. It is revealed that at a total acoustic power of 72 W the cavitation bubble cloud first emerges in the focal region where cavitation bubbles are observed to generate, grow, merge and collapse during the initial 600 μs. The bubble cloud then grows upward to the post-focal region, and finally becomes visible in the pre-focal region. The structure of the final bubble cloud is characterized by regional distribution of cavitation bubbles in the ultrasound field. The cavitation bubble cloud structure remains stable when the acoustic power is increased from 25 W to 107 W, but it changes to a more violent form when the acoustic power is further increased to 175 W. 相似文献
3.
The stability of an encapsulated bubble filled with gas is studied where gas is allowed to diffuse out of the bubble. A mechanistic model that takes into account shell stiffness and surface tension is considered. A critical shell radius for loss of mechanical stability is derived based on a technique adapted for small radius, where surface tension effects become substantial. A new parameter is defined that determines the relative importance of surface tension forces and shell stiffness for shell stability. The developed technique allows to predict, for a given bubble population and gas saturation level of the surrounding liquid, a range of bubble sizes which may collapse in time. Surface tension effects are dominant in determining the critical radius but have a negligible effect on the minimal radius for collapse. The influence of the surface tension on the stability of the shell is illustrated for Optison, a typical ultrasound contrast agent. 相似文献
4.
Emelianov SY Hamilton MF Ilinskii YA Zabolotskaya EA 《The Journal of the Acoustical Society of America》2004,115(2):581-588
A nonlinear model in the form of the Rayleigh-Plesset equation is developed for a gas bubble in an essentially incompressible elastic medium such as a tissue or rubberlike medium. Two constitutive laws for the elastic medium are considered: the Mooney potential, and Landau's expansion of the strain energy density. These two constitutive laws are compared at quadratic order to obtain a relation between their respective elastic constants. Attention is devoted to the relative importance of shear stress on the bubble dynamics, allowing for the equilibrium gas pressure in the bubble to differ substantially from the pressure at infinity. The model for the bubble motion is approximated to quadratic order to assess the importance of shear stress in the surrounding medium relative to that of the gas pressure in the bubble. Relations are derived for the value of the shear wave speed at which the two contributions are comparable, which provide an assessment of when shear stress in the surrounding medium must be taken into account when modeling bubble dynamics. 相似文献
5.
6.
Alexander Bass Seth Putterman Barry Merriman Steven J. Ruuth 《Journal of computational physics》2008,227(3):2118-2129
We propose a symmetry reduction technique whereby molecular dynamics (MD) simulations for spherically symmetric gas bubbles can be accelerated. Results for an imploding Xenon bubble containing 50 million particles—the smallest measured sonoluminescing system—are presented. 相似文献
7.
The influence of the electric field on a single air bubble in transformer oil has been studied. It has been shown that, depending on its size, the bubble may initiate breakdown. The sizes of air and sulfur hexafluoride bubbles at which breakdown will not be observed have been estimated based on the condition for the avalanche-to-streamer transition. 相似文献
8.
Onsager’s principle of minimum energy dissipation in nonequilibrium processes is applied to calculate the characteristics of a surface-conducting charged bubble breakup in a liquid dielectric in a uniform electrostatic field. The domains of physical parameters are determined in which daughter bubbles are ejected from both apexes and are not ejected from only one apex. 相似文献
9.
10.
11.
12.
为了揭示刚性界面附近气泡空化参数与微射流的相互关系, 从两气泡控制方程出发, 利用镜像原理, 建立了考虑刚性壁面作用的空化泡动力学模型. 数值对比了刚性界面与自由界面下气泡的运动特性, 并分析了气泡初始半径、气泡到固壁面的距离、声压幅值和超声频率对气泡溃灭的影响. 在此基础上, 建立了气泡溃灭速度和微射流的相互关系. 结果表明: 刚性界面对气泡振动主要起到抑制作用; 气泡溃灭的剧烈程度随气泡初始半径和超声频率的增加而降低, 随着气泡到固壁面距离的增加而增加; 声压幅值存在最优值, 固壁面附近的气泡在该最优值下气泡溃灭最为剧烈; 通过研究气泡溃灭速度和微射流的关系发现, 调节气泡溃灭速度可以达到间接控制微射流的目的. 相似文献
13.
A model system consisting of a thin layer of vacuum-deposited metallic aluminium on a glass microscope slide was developed to demonstrate the effectiveness of cavitational activity (occurring within the cooling water supply of a dental ultrasonic descaler operating at 25 kHz) in the removal of particulate matter from solid surfaces. The pattern of particulate matter removal using this model system demonstrated both the mechanism of bubble activity and the erosive nature of microbubbles.Non-resonant bubbles were formed by surface wave activity and adhered to the surface of the slide. There was some removal of the aluminium metal at the periphery of the bubble (probably by a microstreaming mechanism) giving a ‘ghost’ outline. The majority of aluminium removal was caused by numerous microbubbles of non-resonant sizes (typically 1 to 2 μm diameter) formed by surface wave induced fragmentation of the parent bubble.The damaging and erosive effects of transient cavitational activity appear to be the result of sub-resonant sized microbubble formation from larger parent bubbles. 相似文献
14.
Using an appropriate approximation, we have formulated the interacting equation of multi-bubble motion for a system of a single bubble and a spherical bubble cluster. The behavior of the bubbles is observed in coupled and uncoupled states. The oscillation of bubbles inside the cluster is in a coupled state. The numerical simulation demonstrates that the secondary Bjerknes force can be influenced by the number density, initial radius, distance, driving frequency, and amplitude of ultrasound. However, if a bubble approaches a bubble cluster of the same initial radii, coupled oscillation would be induced and a repulsive force is evoked, which may be the reason why the bubble cluster can exist steadily. With the increment of the number density of the bubble cluster, a secondary Bjerknes force acting on the bubbles inside the cluster decreases due to the strong suppression of the coupled bubbles. It is shown that there may be an optimal number density for a bubble cluster which can generate an optimal cavitation effect in liquid for a stable driving ultrasound. 相似文献
15.
Microalgal cell disruption induced by acoustic cavitation was simulated through solving the bubble dynamics in an acoustical field and their radial kinetics (chemical kinetics of radical species) occurring in the bubble during its oscillation, as well as calculating the bubble wall pressure at the collapse point. Modeling results indicated that increasing ultrasonic intensity led to a substantial increase in the number of bubbles formed during acoustic cavitation, however, the pressure generated when the bubbles collapsed decreased. Therefore, cumulative collapse pressure (CCP) of bubbles was used to quantify acoustic disruption of a freshwater alga, Scenedesmus dimorphus, and a marine alga, Nannochloropsis oculata and compare with experimental results. The strong correlations between CCP and the intracellular lipid fluorescence density, chlorophyll-a fluorescence density, and cell particle/debris concentration were found, which suggests that the developed models could accurately predict acoustic cell disruption, and can be utilized in the scale up and optimization of the process. 相似文献
16.
Based on the theory of elastic mechanics, a dynamical model of an encapsulated gas microbubble under ultrasound is presented. The dynamical motion of the microbubble is divided into three states: buckled, elastic, and ruptured. The model describes the compression-only behavior appropriately and derives the transient variation of the resonance frequency of the damped oscillation and the relation between the critical rupture radius and initial outer radius. The normal stress in the tangential direction plays the principal role in the rupture and buckling of the encapsulating shell, resulting in likely rupture for a larger microbubble and resistance to rupture for a thicker-shell microbubble. Comparison of proposed dynamical model with Marmottant’s model has been given. The dynamical model can be employed in ultrasound medical diagnostics and therapy of drug incorporation or extravasation through further understanding the influence of the encapsulating shell. 相似文献
17.
高强度聚焦超声场中空化泡群的结构及其形成过程 总被引:3,自引:0,他引:3
空化是高强度聚焦超声(HIFU)引起组织损伤的作用机制之一。本文使用高速摄影技术研究了HIFU场中空化泡群结构的空间分布特征、超声功率对空化泡群结构的影响、空化泡群结构的建立过程尤其是起始过程。空化泡群的结构以空化泡在声场中的区域化分布为特征.在一定功率范围内空化泡群的结构保持稳定。从建立过程来看,空化泡群首先出现在焦区,然后在焦后区(远离换能器的区域)形成,焦前区(靠近换能器的区域)空化泡群最后形成。在对空化泡群起始的研究中发现最初拍摄到的空化泡群形状与焦区形状接近,并且观察到空化泡在焦区发生聚集然后破裂的现象。 相似文献
18.
Koch P Kurz T Parlitz U Lauterborn W 《The Journal of the Acoustical Society of America》2011,130(5):3370-3378
Bubble dynamics is investigated numerically with special emphasis on the static pressure and the positional stability of the bubble in a standing sound field. The bubble habitat, made up of not dissolving, positionally and spherically stable bubbles, is calculated in the parameter space of the bubble radius at rest and sound pressure amplitude for different sound field frequencies, static pressures, and gas concentrations of the liquid. The bubble habitat grows with static pressure and shrinks with sound field frequency. The range of diffusionally stable bubble oscillations, found at positive slopes of the habitat-diffusion border, can be increased substantially with static pressure. 相似文献
19.
为进一步揭示功率超声振动的珩磨机理,以珩磨液为工作介质,研究了功率超声珩磨环境中实际气体的单空泡动力学特性。基于Rayleigh-Plesset方程,应用实际气体绝热方程和范德瓦尔斯方程对其进行了修正,建立了功率超声珩磨环境中实际气体的单空泡动力学方程以及实际气体单空泡共振频率方程。并运用4~5阶RungeKutta法模拟了不同超声条件(声压幅值、空泡初始半径、振动频率)对泡壁的运动以及运动速度的影响。结果表明:较高的声压幅值,空泡理论共振半径R'0与初始半径R0的比值为102数量级以及较低的超声频率有利于超声珩磨磨削区空化效应的发生。 相似文献
20.
We theoretically describe a new regime of reorientation of the director field \(\widehat n\) and velocity v of a nematic liquid crystal (LC) encapsulated in a rectangular cell under the action of strong electric field E directed at angle α (~π/2) to the horizontal surfaces bounding the LC cell. The numerical calculations in the framework of nonlinear generalization of the classical Eriksen–Leslie theory showed that at certain relations between the torques and momenta affecting the unit LC volume and E ? Eth, transition periodic structures can arise during reorientation of \(\widehat n\), if the corresponding distortion mode has the fastest response and, thus, suppresses all the rest of the modes, including uniform ones. The position of sites of these periodic structures is affected by the value of field E, angle α, and the character of anchoring of LC molecules to the bounding surfaces. The calculations performed for the nematic formed by 4-n-penthyl-4’-cyanobiphenyl showed that several vortexes can form in an LC cell under the action of reorientation of the nematic field; the boundaries of these vortexes are determined by the positions of periodic structure sites. 相似文献