首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The triply bonded dirhenium(II) synthons Re(2)X(4)(mu-dppm)(2) (X = Cl, Br; dppm = Ph(2)PCH(2)PPh(2)) react with acetylene at room temperature in CH(2)Cl(2) and acetone to afford the bis(acetylene) complexes Re(2)X(4)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(eta(2)-HCCH) (X = Cl (3), Br(4)). Compound 3 has been derivatized by reaction with RNC ligands in the presence of TlPF(6) to give unsymmetrical complexes of the type [Re(2)Cl(3)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(eta(2)-HCCH)(CNR)]PF(6) (R = Xyl (5), Mes (6), t-Bu (7)), in which the RCN ligand has displaced the chloride ligand cis to the eta(2)-HCCH ligand. The reaction of 3 with an additional 1 equiv of acetylene in the presence of TlPF(6) gives the symmetrical all-cis isomer of [Re(2)Cl(3)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(eta(2)-HCCH)(2)]PF(6) (8). The two terminal eta(2)-HCCH ligands in 8 are very labile and can be displaced by CO and XylNC to give the complexes [Re(2)Cl(3)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(L)(2)]Y (L = CO when Y = PF(6) (9); L = CO when Y = (PF(6))(0.5)/(H(2)PO(4))(0.5) (10); L = XylNC when Y = PF(6) (11)). These substitution reactions proceed with retention of the all-cis stereochemistry. Single-crystal X-ray structure determinations have been carried out on complexes 3, 5, 8, 10, and 11. In no instance have we found that the acetylene ligands undergo reductive coupling reactions.  相似文献   

2.
Wu W  Fanwick PE  Walton RA 《Inorganic chemistry》1996,35(19):5484-5491
The reactions of the unsymmetrical, coordinatively unsaturated dirhenium(II) complexes [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)]Y (XylNC = 2,6-dimethylphenyl isocyanide; Y = O(3)SCF(3) (3a), PF(6) (3b)) with XylNC afford at least three isomeric forms of the complex cation [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)](+). Two forms have very similar bis(&mgr;-halo)-bridged edge-sharing bioctahedral structures of the type [(CO)BrRe(&mgr;-Br)(2)(&mgr;-dppm)(2)Re(CNXyl)(2)]Y (Y = O(3)SCF(3) (4a/4a'), PF(6) (4b/4b')), while the third is an open bioctahedron [(XylNC)(2)BrRe(&mgr;-dppm)(2)ReBr(2)(CO)]Y (Y = O(3)SCF(3) (5a), PF(6) (5b)). While the analogous chloro complex cation [Re(2)Cl(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)](+) was previously shown to exist in three isomeric forms, only one of these has been found to be structurally similar to the bromo complexes (i.e. the isomer analogous to 5a and 5b). The reaction of 3a with CO gives the salt [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(2)(CNXyl)]O(3)SCF(3) (7), in which the edge-sharing bioctahedral cation [(XylNC)BrRe(&mgr;-Br)(&mgr;-CO)(&mgr;-dppm)(2)ReBr(CO)](+) has an all-cis arrangement of pi-acceptor ligands. The Re-Re distances in the structures of 4b', 5a, and 7 are 3.0456(8), 2.3792(7), and 2.5853(13) ?, respectively, and accord with formal Re-Re bond orders of 1, 3, and 2, respectively. Crystal data for [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)](PF(6))(0.78)(ReO(4))(0.22).CH(2)Cl(2) (4b') at 295 K: monoclinic space group P2(1)/n (No. 14) with a = 19.845(4) ?, b = 16.945(5) ?, c = 21.759(3) ?, beta = 105.856(13) degrees, V = 7038(5) ?(3), and Z = 4. The structure was refined to R = 0.060 (R(w) = 0.145) for 14 245 data (F(o)(2) > 2sigma(F(o)(2))). Crystal data for [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(CNXyl)(2)]O(3)SCF(3).C(6)H(6) (5a) at 173 K: monoclinic space group P2(1)/n (No. 14) with a = 14.785(3) ?, b = 15.289(4) ?, c = 32.067(5) ?, beta = 100.87(2) degrees, V=7118(5) ?(3), and Z = 4. The structure was refined to R = 0.046 (R(w) = 0.055) for 6962 data (I > 3.0sigma(I)). Crystal data for [Re(2)Br(3)(&mgr;-dppm)(2)(CO)(2)(CNXyl)]O(3)SCF(3).Me(2)CHC(O)Me (7) at 295 K: monoclinic space group P2(1)/n (No. 14) with a = 14.951(2) ?, b = 12.4180(19) ?, c = 40.600(5) ?, beta = 89.993(11) degrees, V = 7537(3) ?(3), and Z = 4. The structure was refined to R = 0.074 (R(w) = 0.088) for 6595 data (I > 3.0sigma(I)).  相似文献   

3.
Reaction of aminophosphinimine [RHN(CH(2))(2)N[double bond, length as m-dash]PPh(3)] (R = H, Et) with Re(2)(CO)(10) provided the NH-functionalized carbene rhenium complex [Re(2)(CNHCH(2)CH(2)NR)(CO)(9)] (3a, R = H, 3b, R = Et). Treatment of 3 with Br(2) provided the mono nuclear [Re(CNHCH(2)CH(2)NR)(CO)(4)Br] (1, R = H, 2, R = Et). However, NH-functionalized carbene complexes 1-3 did not undergo N-alkylation with alkyl halides to yield the N-substituted NHC complexes. The direct ligand substitution of [Re(CO)(5)Br] with a carbene donor was employed to prepare [Re(IMes(2))(CO)(4)Br] (6a, IMes(2) = 1,3-di-mesitylimidazol-2-ylidene; 6b, IMes(2) = 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene). Analyses of spectroscopic and crystal data of 6a and 6b show similar corresponding data among these complexes, suggesting the saturated and unsaturated NHCs have similar bonding with Re(I) metal centers. Reduction of 6a and 6b with LiEt(3)BH yielded the corresponding hydrido complexes 7a-b [ReH(CO)(4)(IMes(2))], but not 1 and 2. Ligand substitution of 1, 6a and 6b toward 2,2'-bipyridine (bipy) was investigated. Crystal structures of 1, 3a-b, 6a-b and 7b were determined for characterization and comparison.  相似文献   

4.
The reaction of fac-[NEt(4)](2)[Re(CO)(3)Br(3)] with (S)-(2-(2'-pyridyl)ethyl)cysteamine, L(1), in methanol leads to the formation of the cationic fac-[Re(CO)(3)(NSN)][Br] complex, 1, with coordination of the nitrogen of the pyridine, the sulfur of the thioether, and the nitrogen of the primary amine. When fac-[NEt(4)](2)[Re(CO)(3)Br(3)] reacts with the homocysteine derivative (S)-(2-(2'-pyridyl)ethyl)-d,l-homocysteine, L(2), the neutral fac-Re(CO)(3)(NSO) complex, 2, is produced with coordination of the nitrogen of the primary amine, the sulfur of the thioether, and the oxygen of the carboxylate group, while the pyridine ring remains uncoordinated. The analogous technetium-99m complexes, 1' and 2', were also prepared quantitatively by the reaction of L(1) and L(2) with the fac-[(99m)Tc(CO)(3)(H(2)O)(3)](+) precursor at 70 degrees C in water. Given that both (S)-(2-(2'-pyridyl)ethyl)cysteamine and homocysteine can be easily N- or S-derivatized by a bioactive molecule of interest, both the NSN or NSO ligand systems could be used to develop target-specific radiopharmaceuticals for diagnosis and therapy.  相似文献   

5.
[NEt(4)](2)[Re(CO)(3)Br(3)] reacts with 2-acetylpyridine phenylthiosemicarbazone (HL(1)) and 2-pyridine formamide thiosemicarbazone (HL(2)) under formation of air-stable, neutral rhenium(I) complexes of the compositions [Re(CO)(3)(L(1)-N,N,S)] and [Re(CO)(3)Br(HL(2)-N,N)]. Spectroscopic studies and X-ray crystallography show that the potentially tridentate thiosemicarbazones adopt unusual coordination modes. Whereas HL(1) deprotonates and binds to the metal in a nonplanar fashion, HL(2) acts as neutral N,N donor ligand. The bond lengths inside the chelate rings are almost uninfluenced by the overall bonding situation.  相似文献   

6.
A series of Re(I) complexes, [Re(CO)(3)Cl(HPB)] (1), [Re(CO)(3)(PB)H(2)O] (2), [Re(CO)(3)(NO(3))(PB-AuPPh(3))] (3), and [Re(CO)(3)(NO(3))(PB)Au(dppm-H)Au](2) (4) [HPB = 2-(2'-pyridyl)benzimidazole; dppm = 2,2'-bis(diphenylphosphinomethane)], have been synthesized and characterized by X-ray diffraction. Complex 1, which exhibits interesting pH-dependent spectroscopic and luminescent properties, was prepared by reacting Re(CO)(5)Cl with an equimolar amount of 2-(2'-pyridyl)benzimidazole. The imidazole unit in complex 1 can be deprotonated to form the imidazolate unit to give complex 2. Addition of 1 equiv of AuPPh(3)(NO(3)) to complex 2 led to the formation of a heteronuclear complex 3. Addition of a half an equivalent of dppm(Au(NO(3)))(2) to complex 2 yielded 4. In both 3 and 4, the imidazolate unit acts as a multinuclear bridging ligand. Complex 4 is a rare and remarkable example of a Re(2)Au(4) aggregate in combination with μ(3)-bridging 2-(2'-pyridyl)benzimidazolate. Finally, complex 2 has been used to examine the Hg(2+)-recognition event among group 12 metal ions. Its reversibility and selectivity toward Hg(2+) are also examined.  相似文献   

7.
Cyanocobalamin (B(12)) offers a biocompatible scaffold for CO-releasing 17-electron dicarbonyl complexes based on the cis-trans-[Re(II)(CO)(2)Br(2)](0) core. A Co-C≡N-Re conjugate is produced in a short time and high yield from the reaction of [Et(4)N](2)[Re(II)Br(4)(CO)(2)] (ReCORM-1) with B(12). The B(12)-Re(II)(CO)(2) derivatives show a number of features which make them pharmaceutically acceptable CO-releasing molecules (CORMs). These cobalamin conjugates are characterized by an improved stability in aqueous aerobic media over the metal complex alone, and afford effective therapeutic protection against ischemia-reperfusion injury in cultured cardiomyocytes. The non-toxicity (at μM concentrations) of the resulting metal fragment after CO release is attributed to the oxidation of the metal and formation in solution of the ReO(4)(-) anion, which is among the least toxic of all of the rare inorganic compounds. Theoretical and experimental studies aimed at elucidating the aqueous chemistry of ReCORM-1 are also described.  相似文献   

8.
A new and high yielding method for the synthesis of [M(CO)(3)(eta(5)-2,3-C(2)B(9)H(11))](-) and the bifunctional metal complexes, rac-[M(CO)(3)(eta(5)-2-R-2,3-C(2)B(9)H(10))](-) (R = CH(2)CH(2)CO(2)H), from [M(CO)(3)Br(3)](2)(-) (M = Re, (99)Tc) was developed. The general approach entailed the addition of nido-[(C(2)B(9)H(12))(-)], or the acid substituted analogue, to [M(CO)(3)Br(3)](2)(-) (M = Re, (99)Tc) in the presence of TlOEt in THF. It was also possible to prepare the reported products in water using sodium carbonate in place of TlOEt. The reported approach led to the preparation, and X-ray crystallographic structure determination, of the first Tc-carborane complex reported to date (a = 13.606(17) A, b = 10.685(13) A, c = 15.534(16) A, alpha = gamma = 90 degrees, beta = 111.84(2) degrees). Because of the stabilities of the metal complexes, and the fact that the compounds can be prepared in water, the bifunctional derivatives can be considered as novel synthons for the preparation of organometallic (99m)Tc and (186/188)Re radiopharmaceuticals.  相似文献   

9.
By substitution reactions of the coordinated THF ligands of Re(2)(mu-X)(2)(CO)(6)(THF)(2) by elemental chalcogens (S(8) and red selenium), the complexes Re(2)(mu-X)(2)(CO)(6)(S(8)) (X = Br, 1; I, 2), and Re(2)(mu-X)(2)(CO)(6)(Se(7)), (X = I, 3; Br, 4) have been prepared. Binuclear compound 3 was crystallographically established to be a coordination compound of cyclo-heptaselenium, two adjacent selenium atoms of the Se(7) ligand [Se-Se distance, 2.558(3) A] being bonded to rhenium(I), at an average Re-Se distance of 2.586(3) A, and the nonbonding Re.Re distance being 4.077(3) A. Spectroscopic evidence of the existence of these chalcogen complexes in solution is reported. The Re(2)(mu-X)(2)(CO)(6)(S(8)) complexes undergo S(8) displacement by THF, while the coordinated Se(7) moiety is less readily displaced from 3.  相似文献   

10.
The reactions of ammonia, pyridine (py), N-methyl imidazole (N-MeIm), tetrahydrothiophene (tht), and piperidine (pip) with Re(CO) 3(H 2O) 3 (+), 1 ( + ), were investigated employing aqueous conditions under atmospheric dioxygen. The reaction of [ 1]Br in aqueous ammonia led to [Re(CO) 3(NH 3) 3]Br ([ 2]Br) as the only product isolated. For the aqueous reactions of [ 1]Br with py, N-MeIm, and tht, mixtures of products are formed because of competition between the bromide and added ligand, even when the ligand is present in excess. Substitution of the PF 6 (-) anion for Br (-) leads to the clean formation of [Re(CO) 3L 3][PF 6] ([ 3][PF 6]-[ 5][PF 6]) for py, N-MeIm, and tht, respectively, as the only products observed. Reaction of [ 1][PF 6] with pip produces the dimeric species, (pip)(CO) 3Re(micro-OH) 2Re(CO) 3(pip), 6. Reactions of [ 1]Br were also performed in methanol for comparison purposes. The reaction with pip in this solvent led to the analogous dimer, (pip)(CO) 3Re(micro-OMe) 2Re(CO) 3(pip), 7; however, reactions with py, N-MeIm, and tht gave Re(CO) 3L 2Br, 8- 10, respectively, as the only products. The crystal structures of compounds [ 2]Br- 10 are reported.  相似文献   

11.
A new family of heterobifunctional linkers (L1-L9) containing a terminus consisting of a tridentate donor set for coordination of the {M(CO)(3)}(+) core (M = Tc, Re), and a thiol reactive maleimide group has been prepared conveniently and in high yield under Mitsunobu reaction conditions by the coupling of an appropriate alcohol derivative with maleimide. The rhenium complexes [Re(CO)(3)(Lx)]Br (x= 1-9) were prepared in good yields from the reactions of the ligands and (NEt(4))(2)[Re(CO)(3)Br(3)] in refluxing methanol. The ligands and their Re complexes were characterized by (1)H and (13)C NMR, IR, and ESI-MS. Ligand L4 and [Re(CO)(3)(L5)]Br have been structurally characterized by X-ray crystallography. Photoexcitation of solutions of the complexes [Re(CO)(3)(Lx)]Br (x= 4-6) gives rise to intense and prolonged luminescence at room temperature (fluorescence lifetimes of ca. 16 micros). The ligands and their Re complexes react smoothly at the maleimide linker with sulfhydryl groups of peptides and proteins at room temperature in phosphate-buffered saline (PBS, pH 7.4) to form stable thioether bioconjugates. The photoluminescence properties of the labeled conjugates are similar to those of the parent complexes, but with even longer lifetimes. The ligands can also be labeled at room temperature with (99m)Tc to give chemically robust complexes. The corresponding hydrazinonicotinamide derivative N-[5-(6'-hydrazinopyridine-3'-carbonyl)aminopentyl]maleimide (L10) was also prepared. While coupling of L10 to cysteine ethylester and synthesis of the rhenium derivative [ReCl(3)(HYNIC-maleimide)(2)] were successfully accomplished, attempts to couple [ReCl(3)(HYNIC-maleimide)(2)] to glutathione or BSA yielded intractable mixtures.  相似文献   

12.
Four heterotrinuclear Re(IV)(2)M(II) compounds of general formula (NBu(4))(2)[{Re(IV)Br(4)(μ-ox)}(2)M(II)(Him)(2)] [NBu(4)(+) = tetra-n-butylammonium cation, ox = oxalate, Him = imidazole; M = Mn (1), Co (2), Ni (3), and Cu (4)] have been synthesized by using the novel mononuclear complex [Re(IV)Br(4)(ox)](2-) as a ligand toward divalent first-row transition metal ions in the presence of imidazole. Compounds 1-4 are isostructural complexes whose structure contains discrete trinuclear [{Re(IV)Br(4)(μ-ox)}(2)M(II)(Him)(2)](2-) anions and bulky NBu(4)(+) cations. The Re and M atoms are six-coordinated: four peripheral bromo and two oxalate-oxygens (at Re), and two cis-coordinated imidazole molecules and four oxygen atoms from two oxalate ligands (at M), build distorted octahedral surroundings. Two peripheral [ReBr(4)(ox)](2-) units act as bidentate ligands through the oxalate group toward the central [M(II)(Him)(2)] fragment affording the trinuclear entities. The values of the intramolecular Re···M separation are 5.62(1) (1), 5.51(1) (2), 5.46(1) (3), and 5.55(1) ? (4). Magnetic susceptibility measurements on polycrystalline samples of 1-4 in the temperature range of 1.9-300 K show the occurrence of intramolecular antiferro- [J = -1.1 cm(-1) (1)] and ferromagnetic interactions [J = +3.9 (2), +19.7 (3), and +14.4 cm(-1) (4)], the Hamiltonian being defined as H? = -J [S?(M)(S?(Re1) + S?(Re2))]. The larger spin delocalization on the oxalato bridge in 1-4 when compared to the trinuclear Re(IV)(2)M(II) complexes with chloro instead of bromo as peripheral ligands (1'-4') accounts for the strengthening of the magnetic interactions in 1-4 [J = -0.35 (1'), +14.2 (3'), and +7.7 cm(-1) (4')]. An incipient frequency dependence of the out-of-phase ac signals of 3 at very low temperatures is reminiscent of a system with slow relaxation of the magnetization, a phenomenon characteristic of single-molecule magnet behavior.  相似文献   

13.
Mixed ligand fac-tricarbonyl complexes of the general formula [M(L1)(L2)(CO)3](M = Re, 99(m)Tc, L1= imidazole, benzyl isocyanide, L2 = 1H-imidazole-4-carboxylic acid, pyridine-2,4-dicarboxylic acid, pyridine-2,5-dicarboxylic acid) have been prepared starting from the precursors [M(OH2)3(CO)3]+. The complexes can be obtained in good yield and purity in a two-step procedure by first attaching the bidentate ligand followed by addition of the monodentate. 99mTc compounds can also be prepared at the tracer level in one-pot procedures with L1 and L2 being concomitantly present. This [2 + 1] approach allows the labeling of bioactive molecules containing a monodentate or a bidentate donor site. Examples given in here are N-(tert-butoxycarbonyl)glycyl-N-(3-(imidazol-1-yl)propyl)phenylalaninamide, 5-((3-(imidazol-1-yl)propyl)aminomethyl)-2'-deoxyuridine and 4-(5-isonitrilpentyl)-1-(2-methoxyphenyl)-piperazine as L1 and N-((6-carboxypyridine-3-yl)methyl)glycylphenylalanine as L2. The corresponding second ligand can be used to influence the physico-chemical properties of the conjugate. The crystal structures of [99Tc(OH2)(imc)(CO)3], [Re(OH2)(2,4-dipic)(CO)3], [Re(bic)(2,4-dipic)(CO)3] and [Re(im)(2,5-dipic)(CO)3] are reported.  相似文献   

14.
The preparation of two new bis(N-heterocyclic carbene) platinum(II) complexes, in which NHC rings are joined by a CH(2) linker group, is described. While, the chelate complex [PtMe(2)(bis-NHC1)], 1, was formed with large tert-butyl wingtips, the iso-propyl N-substituent analogue favors formation of the cluster complex [Pt(2)Me(4)(μ-SMe(2))(μ-bis-NHC2)](2)(μ-Ag(2)Br(2)), 2, in which two binuclear platinum(II) complexes are linked together by an Ag(2)Br(2) unit. The chelating platinum complex 1 undergoes aerial CO(2) fixation and forms platinum(II) carbonate complex [Pt(CO(3))(bis-NHC1)], 3.  相似文献   

15.
The complexes formed from the reaction of N-acylated tris-(pyridin-2-yl)methylamine (LH) with [Re(CO)(5)Br] depend on the structure of the ligand and the reaction conditions. Thus, while N-[1,1,1-tris-(pyridin-2-yl)methyl]acetamide coordinates through the three pyridine nitrogens to give a stable cationic complex [LHRe(CO)(3)Br], the analogous N-benzoyl ligand reacts under similar conditions to give a neutral complex [LRe(CO)(3)] with coordination through two pyridine nitrogens and a deprotonated amide. To try to explain these different outcomes, the reactions of some structurally related N-acylated [1,1-bis(pyridin-2-yl)]methylamines (L'H) with [Re(CO)(5)Br] have been studied and the reaction pathways identified. These studies indicate that a neutral complex [L'HRe(CO)(3)Br] is initially formed in which the amide portion of the ligand is uncoordinated, but that this complex under appropriate conditions then rearranges to give a cationic complex [L'HRe(CO)(3)]Br in which the coordinated amide nitrogen either remains protonated or is present in its imidic acid tautomeric form. Elimination of HBr from these complexes either thermally or in the presence of base then gives stable neutral complexes [L'Re(CO)(3)]. The impact of the N-acyl group and any substituent at the apex of the tripodal ligands (L'H) on the relative stabilities of intermediate complexes on the reaction pathway helps provide an explanation for the observed difference in behaviour of the N-acylated tris(pyridin-2-yl)methylamines (LH).  相似文献   

16.
Oxacalix[3]arenes p-methyloxacalix[3]arene (L(1)), p-isopropyloxacalix[3]arene (L2), and p-ethoxycarbonyloxacalix[3]arene (L3) are able to bind the Re(I)(CO)3 moiety with two of their three phenol-O atoms and one of their ether-O atoms. The monoanionic complexes were isolated in the salts (DBUH)[Re(CO)3(L1H-2)].L1 (1) and (NEt4)[Re(CO)3(L2H-2)].L2.0.5 MeCN (2) (DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene). Over the course of its reaction with (NEt4)(2)[Re(CO)3Br(3)] and DBU, p-ethoxycarbonyloxacalix[3]arene decomposes to form [{Re(CO)3(L4H-2)}2] (3) {L4 = 1-(5-ethoxycarbonyl-2-hydroxy-3-hydroxymethyl-benzyl)-2,3,4,6,7,8,9,10-octahydro-pyrimido[1,2-a]azepin-1-ium. The expected monoanion [Re(CO)3(L3H-2)]- (4) was identified by 13C NMR and mass spectra.  相似文献   

17.
The reactions of methylacetoacetate and ethyl 2-methylacetoacetate thiosemicarbazones (H(2)L(A) and H(2)L(B), respectively) with [ReX(CO)(5)] and [ReX(CO)(3)(CH(3)CN)(2)] (X = Cl, Br) were explored under various experimental conditions. Besides the adducts fac-[ReX(CO)(3)(H(2)L)], in which the rhenium is coordinated to three carbonyl groups, the X anion, and the N,S-bidentate thiosemicarbazone ligand, the following complexes were also isolated: fac-[ReBr(CO)(3)(Hpyz(B))], the tetrameric complexes fac-[Re(pyz(A))(CO)(3)](4) and fac-[Re(pyz(B))(CO)(3)](4), and fac-[Re(pyz(B))(CO)(3)(H(2)O)] (where Hpyz(A) and Hpyz(B) are pyrazolones derived by cyclization of H(2)L(A) and H(2)L(B), respectively). The cyclization reactions were monitored by (1)H NMR spectroscopy and the complexes isolated were identified by elemental analysis, mass spectrometry, IR and (1)H NMR spectroscopy, and in some cases by X-ray diffractometry. The isolation and the full structural identification of the rather unusual fac-[ReBr(CO)(3)(Hpyz(B))], which contains the enol form of the pyrazolone ligand, affords new insight into the cyclization of thiosemicarbazones derived from beta-keto esters.  相似文献   

18.
The novel complexes CpRe(CCHPh)(CO)2 and Cp2Re2(μ-CCHPh)(CO)4 containing a terminal and a bridging phenylvinylidene ligand respectively and the binuclear complex Cp(CO)2Re[CC(Ph)C(Ph)CH2]Re(CO)2Cp were obtained in the reaction of CpRe(CO)3 with PhCCH.According to an X-ray study of the latter complex the unusual bridging ligand is η1-bonded to one Re atom and η2-bonded to the other.  相似文献   

19.
The anions [ReX3(CO)2(NO)]- (with X = Cl, 1; X = Br, 2) have been prepared with different counterions. Complex 1 was found to lose its chloride ligands in water within 24 h. The [Re(H2O)3(CO)2(NO)]2+ cation obtained after hydrolysis is a strong acid, which consequently undergoes a slow condensation reaction in water to form the very stable [Re(mu3-O)(CO)2(NO)]4 cluster 4 at pH > 2, that precipitates from the aqueous solution and is insoluble also in organic solvents. Fast deprotonation of [Re(H2O)3(CO)2(NO)]2+ did not lead to 4 but rather to the mononuclear species [Re(OH)(H2O)2(CO)2(NO)]+. Subsequent attack of OH- at a CO group resulted in the formation of a rhenacarboxylic acid and its carboxylate anion. For solutions of even higher pH, IR spectroscopy provided evidence for the formation of a Re(C(O)ON(O)) species. These processes were found to be reversible on lowering the pH. Starting from cluster 4 it was possible to obtain complexes of the types [ReX(CO)2(NO)L2] or [Re(CO)2(NO)L3](L2 = 2-picolinate, 2,2'-bipyridine, L-phenylalanate; L3 = tris(pyrazolyl)methane, 1,4,7-trithiacyclononane) in the presence of an acid in protic solvents, but only in low yields. In further synthetic studies, complexes 1 and 2 were found to be superior starting materials for substitution reactions to form [ReX(CO)2(NO)L2] or [Re(CO)2(NO)L3] complexes.  相似文献   

20.
The syntheses of 2,2'-bipyridin-5-ylmethyl-5-(1,2-dithiolan-3-yl)pentanoate (L1) and N-(2,2'-bipyridin-5-ylmethyl)-5-(1,2-dithiolan-3-yl)pentanamide (L2) and their neutral fac carbonylrhenium(I) complexes [Re(L1)(CO)(3)Br] and [Re(L2)(CO)(3)Br] are reported. The electronic absorption and emission spectra of the complexes are similar to the spectrum of the reference compound [Re(bipy)(CO)(3)Br] and correlate well with the density functional theory calculations undertaken. The surface-enhanced Raman spectroscopy (SERS) spectra (excited at both 532 and 785 nm) of the ligands and complexes were examined and compared to the spectrum of ethyl 5-(1,2-dithiolan-3-yl)pentanoate (L3), revealing that there is very little contribution to the spectra of these species from the dithiolated alkyl chains. The spectra are dominated by the characteristic peaks of a metalated 2,2'-bipyridyl group, arising from the silver colloid/ion complexation, and the rhenium center. The rhenium complexes show weak SERS bands related to the CO stretches and a broad band at 510 cm(-1) assigned to Re-CO stretching. Concentration-dependent studies, measured by the relative intensity of several assigned peaks, indicate that, as the surface coverage increases, the bipyridine moiety lifts off the surface. In the case of L1 and L2, this gives rise to complexes with silver at low concentration, enhancing the signals observed, while for the tricarbonylbromorhenium complexes of these ligands, the presence of the disulfide tether allows an enhancement in the limits of detection of these surface-borne species of 20 times in the case of [ReL2(CO)(3)Br] over [Re(bipy)(CO)(3)Br].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号