首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-dimensional ultrathin polymer shells have been produced by a combination of step-by-step adsorption of polyelectrolytes on glutaraldehyde-treated human erythrocytes and subsequent solubilization of the cytoplasmatic constituents by means of a deproteinizing agent. The obtained hollow films preserve both the size and shape of the templating cells. This opens a pathway for the fabrication of polymeric capsules within a wide range of size and shape by using various biological templates. They may have exciting potential applications, such as templates for nanocomposites, as containers for a large class of materials, or as cages for chemical reactions. The thickness of the films can be adjusted over a large range: from a few nm up to several tens of nm. The polymer shells are permeable to small molecules and ions but not to macromolecules. An increase in the ionic strength of the solution up to 100 mmol make the capsules permeable for proteins. Permeability and conductivity studies have provided evidence that the adsorption of lipids on polyelectrolyte layers is a means of producing capsules with controlled permeability properties. 6-Carboxyfluorescein and Rhodamin 6G were precipitated within the capsules.  相似文献   

2.
李仲秋  吴增强  夏兴华 《色谱》2020,38(10):1189-1196
近年来,随着材料科学、微纳加工技术和微纳尺度物质传输理论的发展,纳通道技术得到了越来越多的研究和关注。纳通道包括生物纳通道和人工纳通道,其孔径通常为1~100 nm。在这一尺度下,通道表面与通道内物质之间的作用概率大大增强,使得纳通道表现出许多与宏观体系不同的物质传输特性,例如通道表面电荷与通道内离子之间的静电作用产生了离子选择性,通道内电化学势的不对称分布产生了离子整流特性,物质传输过程中占据通道产生了阻塞脉冲特性等。纳通道中的这些物质传输特性在传感、分离、能源等领域具有广泛应用,例如通过对纳通道进行功能化修饰可以实现门控离子传输;利用亚纳米尺度的通道可以实现单分子传感;利用通道与传输物质之间的相互作用可以实现离子、分子、纳米粒子的分离;利用纳通道的离子选择性可以在通道内实现电荷分离,将不同形式的能量(如光、热、压力、盐差等)高效转化为电能。纳通道技术是化学、材料科学、纳米技术等多学科的交叉集合,在解决生物、环境、能源等基本问题方面具有良好的前景。该文综述了近10年来与纳通道物质传输理论以及纳通道技术应用相关的前沿研究,梳理了纳通道技术的发展过程,并对其在各个领域的应用进行了总结与展...  相似文献   

3.
The unfolding dynamics of a flexible hairpin polymer inserted in a square nanochannel is studied using Brownian dynamics simulations of the bead‐spring model. Because the hairpin polymer is not an equilibrium configuration, the molecule starts unfolding until it reaches a stretched configuration inside the tube. We study the effect of varying the channel height and width D, and the number of monomers N in the folded arm on the unfolding times. We show that for square nanochannels, the unfolding time scales as DN2, for small values of D. The unfolding relaxation dynamics obeys similar mechanisms described in the escaping dynamics of partially inserted polymers in cylindrical nanotubes. We also show that the velocity of the polymer center of mass scales as D?1, in agreement with DNA unfolding experiments in solid‐state nanochannels and recent computational simulations. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1411–1418  相似文献   

4.
We describe the use of hard etching methods to create nanodimensional channels and their use as templates for the formation of polymer filament arrays with precise dimensional and orientational control in a single integrated step. The procedure is general as illustrated by the radical, coordination, and photochemical polymerizations that were performed in these nanochannels. The nanochannel templates (20 nm high, 20-200 nm wide, and 100 mum long) were fabricated by the combined use of electron-beam lithography and a sacrificial metal line etching technique. Radical polymerization of acrylates, metal-catalyzed polymerization of norbornene, and photochemical polymerization of 1,4-diiodothiophene were carried out in these nanochannels. The polymers grown follow the dimensions and orientation of the channels, and the polymer filaments can be released without breaking. The approach opens up the possibility of just-in-place manufacturing and processing of patterns and devices from nanostructured polymers using well-established polymer chemistry.  相似文献   

5.
Polymer particles are key materials in various biomedical applications, including drug delivery, cellular immunity, cell capture, biochip, etc. Droplets produced by microfluidics have been widely applied as templates for the fabrication of polymer particles with controllable sizes and narrow size distributions. Compared to smooth polymer particles, those with surface microstructures (e.g., tentacles, bubbles, wrinkles and pits) are more attractive due to their increased surface area and biomimetic structural characteristics. In this review, we summarized representative methods for the preparation of monodispersed polymer particles with various surface microstructures based on droplet microfluidics, as well as their typical bioapplications in drug delivery, cellular immunity and cell capture. Finally, the current challenges and further development in this research area are discussed.  相似文献   

6.
Lulu Fu  Jin Zhai 《Electrophoresis》2019,40(16-17):2058-2074
Biomimetic smart nanochannels have been studied extensively to achieve the precise ionic transport compared to biological ion channels. Similar to ion channels in living organisms, biomimetic smart nanochannels can respond to various stimuli, which allows for promising applications in many fields. In this review, we mainly summarize the recent advances in the design of biomimetic stimuli‐responsive nanochannels and their potential applications including biosensors and drug delivery. Finally, an outlook on the challenges and opportunities for biomimetic stimuli‐responsive nanochannels is provided.  相似文献   

7.
We have demonstrated an in situ route to design barium titanate (BT)@polyvinyl pyrrolidone (PVP) nanoparticles (NPs) in PVP/polyvinylidene fluoride (PVDF) blends. Thus, the PVP simultaneously acted as a linker and a part of the polymer matrix. We have hydrothermally synthesized the tetragonal phase of BT NPs (~150 nm). The BT NPs content was varied from 0 to 15 vol%. The resulting polymer nanocomposites generated enormous interfaces because of homogeneously dispersed BT@PVP NPs. Furthermore, the PVP simultaneously tailored the interfacial properties surrounding the BT NPs and bulk of the polymer matrix. Therefore, we achieved an enhanced maximum polarization (Pmax) and energy density (Ud) of 27.9 μC cm−2 and 13.4 J cm−3 (2261 kV cm−1), respectively, at 7.5 vol% BT NPs loadings. At the same time, PVP/PVDF blends showed Pmax and Ud of only 3.9 μC cm−2 and 4.6 J cm−3 (3369 kV cm−1), respectively. This simple approach of in situ nanomaterials modification will lead to development of low-cost and time-efficient dielectric capacitors.  相似文献   

8.
We present a rapid etch method to surface-micromachine nanochannels with integrated noble metal electrodes using a single metal sacrificial layer. The method is based on the galvanic coupling of a chromium sacrificial layer with gold electrodes, which results in a 10-fold increase in etch rate with respect to conventional single metal etching. The etch process is investigated and characterized by optical and electrochemical measurements, leading to a theoretical explanation of the observed etch rate based on mass transport. Using this explanation we derive some generic design rules for nanochannel fabrication employing sacrificial metal etching.  相似文献   

9.
10.
The flows of dilute polymer solutions in micro- and nanoscale channels are of both fundamental and practical importance in variety of applications in which the channel gap is of the same order as the size of the suspended particles or macromolecules. In such systems depletion layers are observed near solid-fluid interfaces, even in equilibrium, and the imposition of flow results in further cross-stream migration of the particles. In this work we employ dissipative particle dynamics to study depletion and migration in dilute polymer solutions in channels several times larger than the radius of gyration (Rg) of bead-spring chains. We compare depletion layers for different chain models and levels of chain representation, solvent quality, and relative wall-solvent-polymer interactions. By suitable scaling the simulated depletion layers compare well with the asymptotic lattice theory solution of depletion near a repulsive wall. In Poiseuille flow, polymer migration across the streamlines increases with the Peclet and the Reynolds number until the center-of-mass distribution develops two symmetric off-center peaks which identify the preferred chain positions across the channel. These appear to be governed by the balance of wall-chain repulsive interactions and an off-center driving force of the type known as the Segre-Silberberg effect.  相似文献   

11.
Ionic liquids have attracted a considerable attention as the next generation electrolytes for energy devices. We have developed new free-standing and nanostructured polymer films in which ionic liquids are confined into one-dimensionally ordered nanochannels. These polymer films have been obtained by photopolymerization of hydrogen-bonded supramolecular columnar liquid-crystalline self-assemblies of an imidazolium-based ionic liquid and a wedge-shaped diol compound containing polymerizable groups. The macroscopically parallel alignment of the columnar structures on a glass substrate has been achieved by the application of mechanical shearing, and subsequently fixed into polymer films by UV irradiation. This ionic liquid-containing polymer film exhibits higher ionic conductivity than that of the previously reported one-dimensional polymer film obtained by in situ photopolymerization of a covalent-type columnar liquid-crystalline imidazolium salt. The noncovalent supramolecular approach to one-dimensionally ion-conductive polymer films has led to improvement on conductive properties. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 366–371  相似文献   

12.
This article reports the facile synthesis of monodisperse polymer hollow spheres by seeded emulsion polymerization without additional treatment. In this method, P(St-MMA-MAA) copolymer latex particles were first prepared by emulsifier-free emulsion polymerization and then used as seeds to carry out emulsion polymerization of methyl methacrylate (MMA), divinyl benzene (DVB), and 2-hydroxyethyl methacrylate (HEMA) with potassium persulfate (KPS) as initiator at 80 degrees C. The void of hollow spheres was readily adjusted by changing the monomer/seed weight ratio, and it could be enlarged while the diameters of hollow spheres changed little after etching by dimethyl formamide (DMF). The effects of synthetic parameters including the monomer composition and the properties of seeds on the morphology of hollow spheres were investigated in detail. On the basis of the experimental results, it seemed reasonable to conclude that the formation of hollow spheres was due to the "dissolution" of seeds in monomers and phase separation between the constituent polymers. As a thermodynamic factor, sodium dodecyl sulfate (SDS) would allow the preparation of solid particles depending on its level.  相似文献   

13.
Learning from nature has inspired the creation of intelligent devices to meet the increasing needs of the advanced community and also to better understand how to imitate biology. As one of biomimetic nanodevices, nanochannels or nanopores aroused particular interest because of their potential applications in nanofluidic devices, biosensing, filtration, and energy conversions. In this review we have summarized some recent results mainly focused on the design, construction and application in energy conversion systems. Like biological nanochannels, the prepared smart artificial nanochannels fabricated by ion track-etched polymer membranes and smart molecules show a great potential in the field of bioengineering and biotechnology. And these applications can not only help people to know and understand the living processes in nature, but can also inspire scientists to study and develop novel nanodevices with better performance for the mankind.  相似文献   

14.
Cyclotriphosphazene-containing polymer nanofibers with uniform diameters, high aspect ratios, and high specific surface area have been synthesized rapidly at high yields under ultrasonic irradiation via a self-directing template approach. During the polymerization, triethylamine (TEA) as an acid acceptor absorbed a byproduct hydrogen chloride (HCl) to afford triethylamine hydrochloride (TEACl), acting as structure-directing template and guiding the formation of nanofibrous structures. The mechanism was confirmed by means of SEM, TEM, FTIR, XRD, TG, and N2 adsorption method. The molecular structure of as-synthesized polymer nanofibers was characterized by solid state NMR and elemental analysis.  相似文献   

15.
Wafer-size periodic polymer attolitre microvial arrays of varying depth have been fabricated by templating from spin-coated 2D non-close-packed colloidal crystal-polymer nanocomposites.  相似文献   

16.
Hollow polymer capsules are attracting increasing research interest due to their potential application as drug delivery vectors, sensors, biomimetic nano- or multi-compartment reactors and catalysts. Thus, significant effort has been directed toward tuning their size, composition, morphology, and functionality to further their application. In this review, we provide an overview of emerging techniques for the fabrication of polymer capsules, encompassing: self-assembly, layer-by-layer assembly, single-step polymer adsorption, bio-inspired assembly, surface polymerization, and ultrasound assembly. These techniques can be applied to prepare polymer capsules with diverse functionality and physicochemical properties, which may fulfill specific requirements in various areas. In addition, we critically evaluate the challenges associated with the application of polymer capsules in drug delivery systems.  相似文献   

17.
18.
崔树勋 《高分子科学》2017,35(7):857-865
A novel environment-friendly system is proposed tofabricate polymer brush, which has the advantages including non-toxic and inexpensive initiator(eosin Y), visible-light exposure(λ= 515 nm), water medium and ambient environment. The experimental results from UV-Vis spectroscopy, AFM-based single molecule force spectroscopy(SMFS) and other measurements indicate thata polymer brush with a living nature is fabricated via free radical polymerization. This polymer brush may find applications incoatings, bio-interfaces and so forth.  相似文献   

19.
In this paper we report results of both, material preparation and magnetic characterisation, on CoFe2O4 particles of nanometric size formed by in‐situ precipitation within polymer gels. The size of the particles was controlled within a very narrow volume distribution and its average value was shifted from 2 to 10 nm. The existence of nanoparticles showing, at room temperature, coercive field values between 500 and 900 Oe and saturation magnetisations of about 500 emu/cm3, suggest to use these systems to get magnetic recording media with ultra high density. Poly(vinyl alcohol) (PVA) and Polystyrene (PS) films were prepared from this nanocomposite material. After a magnetic field treatment nanoparticles within the PVA films are free to rotate in response to an applied magnetic field. This PVA based nanocomposite film portends a new class of magnetic material with very little or no electrical and magnetic loss.  相似文献   

20.
The behavior of excited PyS with the quencher NO2 in an ionomer solution of anion-conductive resin and in the nanochannels of an anion-conductive membrane was investigated by luminescence quenching measurements. Compared with the behavior of an excited Ru(bpy)32+-MV2+ system in the presence of Nafion, the mobility of ions in the nanochannels of an ion-conductive resin is proved to depend on ion size, structure of nanochannel and channel medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号