首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Much research effort has been made to understand various biological processes at levels of molecules using molecular imaging techniques.Because of great sensitivity,high resolution,and rapid detection,positron emission tomography(PET)imaging is becoming one of the most used imaging techniques for medical diagnose and pre-clinical studies.Here we provide a review on molecular imaging and PET imaging.An introduction is also provided on18F-fluorine labeling techniques for the preparation of PET imaging probes.A summary and comparison of currently available18F-fluorine labeling methods is provided.The perspectives for18F-fluorine labeling techniques are also given.  相似文献   

2.
Positron emission tomography (PET) is rapidly becoming the main nuclear imaging modality of the present century. The future of PET instrumentation relies on semiconductor detectors because of their excellent characteristics. Three-photon positron annihilation has been recently investigated as a novel imaging modality, which demands the crucial high energy resolution of semiconductor detector. In this work the evaluation of the NaI(Tl) scintillator and HPGe and CdZTe semiconductor detectors, to construct a simple three-photon positron annihilation scanner has been explored. The effect of detector and scanner size on spatial resolution (FWHM) is discussed. The characteristics: energy resolution versus count rate and point-spread function of the three-photon positron annihilation image profile from triple coincidence measurements were investigated.  相似文献   

3.
4.
The present study describes a rapid synthesis method for labeled [11C]FK506 for positron emission tomography (PET). A one-pot reaction from [11C]CH3I, involving a Wittig reaction as the key carboncarbon bond formation was developed. The chemical process was accomplished using a designed, fully automated synthetic apparatus, and an injectable solution of [11C]FK506 was obtained in only 34 min from [11C]CH3I. The decay-corrected radiochemical yield based on [11C]CH3I was 11.9%, and the specific activity was 39.8 GBq/μmol.  相似文献   

5.
Capillary LC is one of the most powerful analytical tools available for separation scientists. Its unique analytical properties are associated with numerous technical issues that may cause operation of such systems to be somehow troublesome. Because of that, a good experience in capillary LC troubleshooting is required to keep the system in shape and, in effect, to obtain reliable results. In this paper, we summarize the most important issues of the capillary systems, including void and dead volumes, leakages, sample injection, and a multidimensional LC approach. The aim of this paper was to provide practical advise on system diagnosis, and to present solutions to problems discussed. Also, several exemplary nano-LC separations are included to demonstrate some typical problems encountered in our daily work.  相似文献   

6.
7.
中枢多巴胺系统与多种神经行为障碍的病理生理学有关。一直以来,多巴胺系统正电子发射计算机断层扫描(PET)成像在研究活体大脑中多巴胺生物化学过程上有着重要价值。PET成像的基础是11C、18F等发射正电子的放射性核素标记的显像剂,这些显像剂通过与多巴胺神经系统不同的靶点特异性结合从而反映多巴胺合成、囊泡储存、突触释放和受体结合以及再摄取过程,推动神经病学、精神病学、药物滥用和成瘾以及药物开发的研究进展。本文综述了以氨基酸脱羧酶、多巴胺转运体、多巴胺受体以及囊泡单胺转运体为靶点的11C、18F标记的PET显像剂的研究进展。  相似文献   

8.
中枢多巴胺系统与多种神经行为障碍的病理生理学有关。一直以来,多巴胺系统正电子发射计算机断层扫描(PET)成像在研究活体大脑中多巴胺生物化学过程上有着重要价值。PET成像的基础是11C、18F等发射正电子的放射性核素标记的显像剂,这些显像剂通过与多巴胺神经系统不同的靶点特异性结合从而反映多巴胺合成、囊泡储存、突触释放和受体结合以及再摄取过程,推动神经病学、精神病学、药物滥用和成瘾以及药物开发的研究进展。本文综述了以氨基酸脱羧酶、多巴胺转运体、多巴胺受体以及囊泡单胺转运体为靶点的11C、18F标记的PET显像剂的研究进展。  相似文献   

9.
An analytical model of mixing in the staggered herringbone mixer (SHM) was derived to estimate mixing parameters and provide practical expressions to guide mixer design and operation for a wide range of possible solutes and flow conditions. Mixing in microfluidic systems has historically been characterized by the mixing of a specific solute system or by the redistribution of flow streams; this approach does not give any insight into the ideal operational parameters of the mixer with an arbitrary real system. For Stokes-flow mixers, mixing can be computed from a relationship between solute diffusivity, flow rate, and mixer length. Confocal microscopy and computational fluid dynamics (CFD) modeling were used to directly determine the extent of mixing for several solutes in the staggered herringbone mixer over a range of Reynolds numbers (Re) and Péclet numbers (Pe); the results were used to develop and evaluate an analytical model of its behavior. Mixing was found to be a function of only Pe and downstream position in the mixer. Required mixer length was proportional to log(Pe); this analytical model matched well with the confocal data and CFD model for Pe<5 x 10(4), at which point the experiments reached the limit of resolution. For particular solutes, required length and mixing time depend upon Re and diffusivity. This analytical model is applicable to other solute systems, and possibly to other embodiments of the mixer, to enable optimal design, operation, and estimation of performance.  相似文献   

10.
The main methods for the production of of 11С-methylating agents and traditional and new perspective routes for their use in the synthesis of radiopharmaceuticals for positron emission tomography were considered.  相似文献   

11.
Fluorine presents among its radioactive isotopes fluorine-18, that decays with a 109 min half-life and a β+ emission, allowing external detection of the two coincident γ photons obtained after annihilation. Production techniques (medical cyclotron), radiochemical reactions for isotope incorporation in radiopharmaceuticals and development of specific detection cameras (positron emission tomographs) allowed development of a vast investigation field in medical imaging.Applications of PET in oncology ([18F]fluorodeoxyglucose, FDG) largely improved detection and management of cancers; tracer molecules labelled with fluorine-18 also allow fruitful researches in molecular imaging.  相似文献   

12.
13.
Molecular modelling and simulation methods are increasingly at the forefront of elucidating mechanisms of enzyme-catalysed reactions, and shedding light on the determinants of specificity and efficiency of catalysis. These methods have the potential to assist in drug discovery and the design of novel protein catalysts. This Tutorial Review highlights some of the most widely used modelling methods and some successful applications. Modelling protocols commonly applied in studying enzyme-catalysed reactions are outlined here, and some practical implications are considered, with cytochrome P450 enzymes used as a specific example.  相似文献   

14.
15.
《中国化学快报》2022,33(7):3349-3360
The prevalence of positron emission tomography (PET) imaging has advanced biomedical applications for its ultrahigh sensitivity, deep tissue penetration and quantitative visualization of diseases in vivo. 64Cu with ideal half-life and decay characteristics has been designed as radioactive probes for disease diagnosis. The currently reported 64Cu-labeled nanomaterials have the advantages of long circulation time in serum, good biocompatibility and mature preparation methods, and have been used in vivo PET imaging, biodistribution and pharmacokinetic monitoring, and imaging guided therapy. At the same time, suitable carrier characteristics and radiolabeling strategies are particularly important in the 64Cu PET imaging process. In this review, we summarize different imaging probe designs and 64Cu radiolabeling strategies, as well as their eventual applications in biomedicine. The potential challenges and prospects of 64Cu labeled nanomaterials are also described, which provides broad prospects for radiolabeling strategies and further applications.  相似文献   

16.
Conventional methods for radiolabelling biomolecules such as proteins and peptides with fluorine-18 for PET imaging rely on carbon-fluorine bond formation and are complex and inefficient. Several non-carbon elements form strong bonds (i.e. with high bond enthalpy) with fluorine, but with lower activation energy for their formation compared to carbon-fluorine bonds, whilst preserving a relatively high kinetic stability. In particular, by incorporating boron-, aluminium- and silicon-containing prosthetic groups into biomolecules, promising results have recently been achieved in the radiolabelling with F-18-fluoride under mild aqueous conditions, affording a level of convenience, efficiency and specific activity potentially superior to those offered by conventional C-F bond formation methods. The promise already shown by these early studies heralds a new branch of bioconjugate radiochemistry involving a wider range of "fluoridephilic" elements for synthesis of PET molecular imaging agents.  相似文献   

17.
18.
19.
4,5-Bis(butoxy)-2-nitrobenzaldehyde and 4,5-bis(tert-butoxycarbonyloxy)-2-nitrobenzaldehyde, as well as their fluorine-18 labeled derivatives (the half-life of F18 is T1/2 = 110 min) were synthesized for use as precursors in the synthesis of fluorine-18 labeled catecholamines and 6-[18F]fluoro-l-DOPA ((S)-3-[4,5-dihydroxy-2-[18F]fluorophenyl]-2-aminopropionic acid), important radiopharmaceutical agents (RPAs) for positron emission tomography. An advantageous feature of the newly obtained substituted nitrobenzaldehydes is the presence of labile protective groups which can be removed without using aggressive chemicals and severe conditions, which is of fundamental importance for automation of the RPA synthesis in modern synthesis apparatus. A high and stable radiofluorination yield achieved under the optimum fluorination conditions (Kryptofix 222 [K/K2.2.2.]+[18F], DMF, 140 °C, 10 min) using 4,5-bis(butoxy)-2-nitrobenzaldehyde as a substrate (83±6%, the number of experiments was n = 15) makes this compound a precursor of choice for the radioactive synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号