首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dissociation and ionization processes in dimethyl disulfide, CH(3)S(2)CH(3), induced by one- or two-photon absorption of 193 nm light, have been studied using velocity-map ion imaging. The analysis of the ion images of the CH(3)S(2) (+), CH(3)S(+), S(2) (+), and S(+) fragments has allowed the characterization of the scattering dynamics of some of the main photolysis and dissociative-ionization processes. In particular, the experiments corroborate the formation of electronically excited SCH(3)((2)A(1)) products in the 193 nm photodissociation of dimethyl disulfide seen in earlier studies, and show that laser ionization provides a very sensitive method for their detection. The data have also allowed determination of the recoil energy and angular distributions of the CH(3)S(2) (+) and CH(3)S(+) products of the two-photon dissociative-ionization of the CH(3)S(2)CH(3) molecule. The measured distributions for these products are consistent with the formation of a transient parent ion which dissociates after a substantial intramolecular rearrangement, possibly yielding the most stable isomeric forms of the fragments, namely CH(2)S(2)H(+) and CH(2)SH(+).  相似文献   

2.
Chloride ion catalyzes the reactions of HOBr with bromite and chlorite ions in phosphate buffer (p[H(+)] 5 to 7). Bromine chloride is generated in situ in small equilibrium concentrations by the addition of excess Cl(-) to HOBr. In the BrCl/ClO(2)(-) reaction, where ClO(2)(-) is in excess, a first-order rate of formation of ClO(2) is observed that depends on the HOBr concentration. The rate dependencies on ClO(2)(-), Cl(-), H(+), and buffer concentrations are determined. In the BrCl/BrO(2)(-) reaction where BrCl is in pre-equilibrium with the excess species, HOBr, the loss of absorbance due to BrO(2)(-) is followed. The dependencies on Cl(-), HOBr, H(+), and HPO(4)(2)(-) concentrations are determined for the BrCl/BrO(2)(-) reaction. In the proposed mechanisms, the BrCl/ClO(2)(-) and BrCl/BrO(2)(-) reactions proceed by Br(+) transfer to form steady-state levels of BrOClO and BrOBrO, respectively. The rate constant for the BrCl/ClO(2)(-) reaction [k(Cl)(2)]is 5.2 x 10(6) M(-1) s(-1) and for the BrCl/BrO(2)(-) reaction [k(Br)(2)]is 1.9 x 10(5) M(-1) s(-1). In the BrCl/ClO(2)(-) case, BrOClO reacts with ClO(2)(-) to form two ClO(2) radicals and Br(-). However, the hydrolysis of BrOBrO in the BrCl/BrO(2)(-) reaction leads to the formation of BrO(3)(-) and Br(-).  相似文献   

3.
Time-of-flight mass spectrometry and two-dimensional coincidence techniques have been used to determine, for the first time, the relative precursor-specific partial ionization cross sections following electron-methane collisions. Precursor-specific partial ionization cross sections quantify the contribution of single, double, and higher levels of ionization to the partial ionization cross section for forming a specific ion (e.g. CH(+)) following electron ionization of methane. Cross sections are presented for the formation of H(+), H(2)(+), C(+), CH(+), CH(2)(+), and CH(3)(+), relative to CH(4)(+), at ionizing electron energies from 30 to 200 eV. We can also reduce our dataset to derive the relative partial ionization cross sections for the electron ionization of methane, for comparison with earlier measurements. These relative partial ionization cross sections are in good agreement with recent determinations. However, we find that there is significant disagreement between our partial ionization cross sections and those derived from earlier studies. Inspection of the values of our precursor-specific partial ionization cross sections shows that this disagreement is due to the inefficient collection of energetic fragment ions in the earlier work. Our coincidence experiments also show that the lower energy electronic states of CH(4)(2+) populated by electron double ionization of CH(4) at 55 eV are the same (ground (3)T(1), first excited (1)E(1)) as those populated by 40.8 eV photoionization. The (3)T(1) state dissociating to form CH(3)(+) + H(+) and CH(2)(+) + H(2)(+) and the (1)E(1) to form CH(2)(+) + H(+) and CH(+) + H(+). At this electron energy, we also observe population of the first excited triplet state of CH(4)(2+) ((3)T(2)) which dissociates to both CH(2)(+) + H(+) + H and CH(+) + H(+) + H(2).  相似文献   

4.
张秀  吴东  唐碧峰 《物理化学学报》2012,28(5):1045-1053
利用离子速度影像技术研究了CH2BrCl在265nm附近的激光光解.利用2+1共振增强多光子电离分别获得光解产物Br(2P1/2)和Br(2P3/2)的离子速度图像,从而得出Br(2P1/2)和Br(2P3/2)的速度分布,以及光解碎片的总平动能分布.据此,运用角动量守恒碰撞模型获得了解离氯甲基自由基(·CH2Cl)的振动内能分布.研究结果表明:CH2BrCl+hv→Br(2P1/2)+CH2Cl通道产生的氯甲基自由基中被激发的振动模主要是v4、v3+v4、v2+v4和v2+v6;CH2BrCl+hv→Br(2P3/2)+CH2Cl通道产生的氯甲基自由基中被激发的振动模主要是v2+v6、v1+v3、v2+v5、v2+v3+v5和v1+v5;母体分子CH2BrCl在吸收光解光子后除有v5(CBrstretch)振动模被激发外,还有v7(CH2a-stretch)等其它振动模也被激发.  相似文献   

5.
Reactions of CH(3)F have been surveyed systematically at room temperature with 46 different atomic cations using an inductively coupled plasma/selected-ion flow tube tandem mass spectrometer. Rate coefficients and product distributions were measured for the reactions of fourth-period atomic ions from K(+) to Se(+), of fifth-period atomic ions from Rb(+) to Te(+) (excluding Tc(+)), and of sixth-period atomic ions from Cs(+) to Bi(+). Primary reaction channels were observed corresponding to F atom transfer, CH(3)F addition, HF elimination, and H(2) elimination. The early-transition-metal cations exhibit a much more active chemistry than the late-transition-metal cations, and there are periodic features in the chemical activity and reaction efficiency that maximize with Ti(+), As(+), Y(+), Hf(+), and Pt(+). F atom transfer appears to be thermodynamically controlled, although a periodic variation in efficiency is observed within the early-transition-metal cations which maximizes with Ti(+), Y(+), and Hf(+). Addition of CH(3)F was observed exclusively (>99%) with the late-fourth-period cations from Mn(+) to Ga(+), the fifth-period cations from Ru(+) to Te(+), and the sixth-period cations from Hg(+) to Bi(+) as well as Re(+). Periodic trends are observed in the effective bimolecular rate coefficient for CH(3)F addition, and these are consistent with expected trends in the electrostatic binding energies of the adduct ions and measured trends in the standard free energy of addition. HF elimination is the major reaction channel with As(+), while dehydrogenation dominates the reactions of W(+), Os(+), Ir(+), and Pt(+). Sequential F atom transfer is observed with the early-transition-metal cations, with the number of F atoms transferred increasing across the periodic table from two to four, maximizing at four for the group 5 cations Nb(+)(d(4)) and Ta(+)(d(3)s(1)), and stopping at two with V(+)(d(4)). Sequential CH(3)F addition was observed with many atomic cations and all of the metal mono- and multifluoride cations that were formed.  相似文献   

6.
Fragmentation of doubly charged ethanol clusters [(C(2)H(5)OH)(n)] following the O 1s ionization has been investigated by means of the photoelectron-photoion-photoion coincidence (PEPIPICO) method. The dominant fission channel of (C(2)H(5)OH)(n)(2+) was the formation of protonated cluster ion pairs [H(C(2)H(5)OH)(l)(+)/H(C(2)H(5)OH)(m)(+)]. The fragmentation mechanisms of these ion pairs were discussed based on the analysis of the PEPIPICO contour shape. It was clarified that the prominent fragmentation channel was a secondary decay mechanism, where neutral evaporation occurs after charge separation. On the other hand, the formation of small fragment ions was suppressed, excluding the formation of certain specific fragments (H(3)O(+), C(2)H(5)(+)/COH(+), and C(2)H(4)OH(+)). The formation of small fragment ions was suppressed due to the cooling effect caused by the neutral evaporation and the decrease in the electrostatic repulsive force caused by charge separation.  相似文献   

7.
The dissociative photoionization of energy selected methanol isotopologue (CH(3)OH, CD(3)OH, CH(3)OD and CD(3)OD) cations was investigated using imaging Photoelectron Photoion Coincidence (iPEPICO) spectroscopy. The first dissociation is an H/D-atom loss from the carbon, also confirmed by partial deuteration. Somewhat above 12 eV, a parallel H(2)-loss channel weakly asserts itself. At photon energies above 15 eV, in a consecutive hydrogen molecule loss to the first H-atom loss, the formation of CHO(+)/CDO(+) dominates as opposed to COH(+)/COD(+) formation. We see little evidence for H-atom scrambling in these processes. In the photon energy range corresponding to the B[combining tilde] and C[combining tilde] ion states, a hydroxyl radical loss appears yielding CH(3)(+)/CD(3)(+). Based on the branching ratios, statistical considerations and ab initio calculations, this process is confirmed to take place on the first electronically excited ?(2)A' ion state. Uncharacteristically, internal conversion is outcompeted by unimolecular dissociation due to the apparently weak Renner-Teller-like coupling between the X[combining tilde] and the ? ion states. The experimental 0 K appearance energies of the ions CH(2)OH(+), CD(2)OH(+), CH(2)OD(+) and CD(2)OD(+) are measured to be 11.646 ± 0.003 eV, 11.739 ± 0.003 eV, 11.642 ± 0.003 eV and 11.737 ± 0.003 eV, respectively. The E(0)(CH(2)OH(+)) = 11.6454 ± 0.0017 eV was obtained based on the independently measured isotopologue results and calculated zero point effects. The 0 K heat of formation of CH(2)OH(+), protonated formaldehyde, was determined to be 717.7 ± 0.7 kJ mol(-1). This yields a 0 K heat of formation of CH(2)OH of -11.1 ± 0.9 kJ mol(-1) and an experimental 298 K proton affinity of formaldehyde of 711.6 ± 0.8 kJ mol(-1). The reverse barrier to homonuclear H(2)-loss from CH(3)OH(+) is determined to be 36 kJ mol(-1), whereas for heteronuclear H(2)-loss from CH(2)OH(+) it is found to be 210 kJ mol(-1).  相似文献   

8.
Electrospray ionization mass spectrometry (ESI-MS) was used to probe multiple cation complexation by C(12)H(25)(CH(2))(12)(CH(2))(12)C(12)H(25), 2, and <18N>CH(2)C(6)H(4)CH(2), 3. Complexation of two cations (2Na(+), 2 K(+), or Na(+) and K(+)) by 3 and three cations by 2 (3 Na(+), 3 K(+), and mixtures) as well as mixed proton-metallic cation complexes of both were observed. The K(+)/Na(+) cation-binding selectivity of 18-crown-6 was studied by ESI-MS of a methanol solution, and the selectivity profile was favorably compared with data obtained previously by ion-selective electrode techniques in the same solvent.  相似文献   

9.
Electrospray ionization (ESI) of tetrameric platinum(II) acetate, [Pt(4)(CH(3)COO)(8)], in methanol generates the formal platinum(III) dimeric cation [Pt(2)(CH(3)COO)(3)(CH(2)COO)(MeOH)(2)](+), which, upon harsher ionization conditions, sequentially loses the two methanol ligands, CO(2), and CH(2)COO to form the platinum(II) dimer [Pt(2)(CH(3)COO)(2)(CH(3))](+). Next, intramolecular sequential double hydrogen-atom transfer from the methyl group concomitant with the elimination of two acetic acid molecules produces Pt(2)CH(+) from which, upon even harsher conditions, PtCH(+) is eventually generated. This degradation sequence is supported by collision-induced dissociation (CID) experiments, extensive isotope-labeling studies, and DFT calculations. Both PtCH(+) and Pt(2)CH(+) react under thermal conditions with the hydrocarbons C(2)H(n) (n=2, 4, 6) and C(3)H(n) (n=6, 8). While, in ion-molecule reactions of PtCH(+) with C(2) hydrocarbons, the relative rates decrease with increasing n, the opposite trend holds true for Pt(2)CH(+). The Pt(2)CH(+) cluster only sluggishly reacts with C(2)H(2), but with C(2)H(4) and C(2)H(6) dihydrogen loss dominates. The reactions with the latter two substrates were preceded by a complete exchange of all of the hydrogen atoms present in the adduct complex. The PtCH(+) ion is much less selective. In the reactions with C(2)H(2) and C(2)H(4), elimination of H(2) occurs; however, CH(4) formation prevails in the decomposition of the adduct complex that is formed with C(2)H(6). In the reaction with C(2)H(2), in addition to H(2) loss, C(3)H(3)(+) is produced, and this process formally corresponds to the transfer of the cationic methylidyne unit CH(+) to C(2)H(2), accompanied by the release of neutral Pt. In the ion-molecule reactions with the C(3) hydrocarbons C(3)H(6) and C(3)H(8), dihydrogen loss occurs with high selectivity for Pt(2)CH(+), but in the reactions of these substrates with PtCH(+) several reaction routes compete. Finally, in the ion-molecule reactions with ammonia, both platinum complexes give rise to proton transfer to produce NH(4)(+); however, only the encounter complex generated with PtCH(+) undergoes efficient dehydrogenation of the substrate, and the rather minor formation of CNH(4)(+) indicates that C-N bond coupling is inefficient.  相似文献   

10.
The mass spectra of a series of cycloketone molecules, cyclopentanone (CPO), cyclohexanone (CHO), cycloheptanone (CHPO), and cyclooctanone (COO) are measured in a 788 or 394 nm laser field with 90 fs pulse duration and the intensity ranging from 5 x 10(13) W/cm(2) to 2 x 10(14) W/cm(2). At 788 nm, a dominated parent ion peak and some weak peaks from the fragment ions C(n)H(m)+ are observed for CPO and CHO (a ratio P(+)/T(+), the parent ion yield to the total ion yield, is 81.6% and 52.6%, respectively). But the extensive fragment ion peaks are observed with the greatly reduced parent ion peak for CHPO (P(+)/T(+) = 5.5%) and that are even hard to be identified for COO. These observations are interpreted explicitly in the frame of the significant resonant effect of their cation photoabsorption on ionization and dissociation of these molecules. The present work also suggests that a nonadiabatic ionization occurs with a nuclear rearrangement due to the H movement in these molecules during the ionization in an intense femtosecond laser field.  相似文献   

11.
The singlet potential energy surface for the dissociation of benzene dication has been explored, and its three major dissociation channels have been studied: C6H6(2+) --> C3H3(+) + C3H3(+), C4H3(+) + C2H3(+), and C5H3(+) + CH3(+). The calculated energetics suggest that the products will be formed with considerable translational energy because of the Coulomb repulsion between the charged fragments. The calculated energy release in the three channels shows a qualitative agreement with the experimentally observed kinetic energy release. The formation of certain intermediates is found to be common to the three dissociation channels.  相似文献   

12.
We report measurements of the formation and desorption of ionic fragments induced by very low-energy (10-200 eV) Ar(+) irradiation of thymine (T) films, deposited on a polycrystalline Pt substrate. A multitude of dissociation channels is observed, among which the major cation species are identified as HNCH(+), HNC(3)H(4) (+), C(3)H(3) (+), OCNH(2) (+), [T-OCN](+), [T-OCNH(2)](+), [T-O](+), and [T+H](+) and the major anions as H(-), O(-), CN(-),and OCN(-). Cation fragment desorption appears at much lower threshold energies (near 15 eV) than anion fragment desorption, where the latter depends strongly on the film thickness. It is proposed that anion fragment formation and desorption results from projectile impact-induced excitation of either (1) a neutral thymine molecule, followed by fragmentation and charge exchange between the energetic neutral fragment and the substrate (or film) and/or (2) a deprotonated monoanionic thymine molecule to a dissociative state, followed by a unimolecular fragmentation of the excited thymine anion. The H(-) and O(-) fragment formations may have a further contribution from dipolar dissociation, e.g., formation of electronically excited neutral thymine, followed by dissociation into O(-)+[T-O](+), due to their reduced sensitivity to the film thickness. Positive-ion fragment desorption exhibits no significant dependence on film thickness before the emergence of surface charging, and originates from a kinetically assisted charge-transfer excitation. The results suggest that the potential energy of the incident ion plays a significant role in lowering the threshold energy of kinetic fragmentation of thymine. Measurements of the time-dependent film degradation yields for 100-eV Ar(+) suggest a quantum efficiency for degradation of about six thymine molecules per incident ion.  相似文献   

13.
The fixed charge zwitterionic sulfur betaines dimethylsulfonioacetate (DMSA) (CH(3))(2)S(+)CH(2)CO(2)(-) and dimethylsulfoniopropionate (DMSP) (CH(3))(2)S(+)(CH(2))(2)CO(2)(-) have been synthesized and the structures of their protonated salts (CH(3))(2)S(+)CH(2)CO(2)H···Cl(-) [DMSA.HCl] and (CH(3))(2)S(+)(CH(2))(2)CO(2)H···Pcr(-) [DMSP.HPcr] (where Pcr = picrate) have been characterized using X-ray crystallography. The unimolecular chemistry of the [M+H](+) of these betaines was studied using two techniques; collision-induced dissociation (CID) and electron-induced dissociation (EID) in a hybrid linear ion trap Fourier transform ion cyclotron resonance mass spectrometer. Results from the CID study show a richer series of fragmentation reactions for the shorter chain betaine and contrasting main fragmentation pathways. Thus while (CH(3))(2)S(+)(CH(2))(2)CO(2)H fragments via a neighbouring group reaction to generate (CH(3))(2)S(+)H and the neutral lactone as the most abundant fragmentation channel, (CH(3))(2)S(+)CH(2)CO(2)H fragments via a 1,2 elimination reaction to generate CH(3)S(+)=CH(2) as the most abundant fragment ion. To gain insights into these fragmentation reactions, DFT calculations were carried out at the B3LYP/6-311++G(2d,p) level of theory. For (CH(3))(2)S(+)CH(2)CO(2)H, the lowest energy pathway yields CH(3)S(+)=CH(2)via a six-membered transition state. The two fragment ions observed in CID of (CH(3))(2)S(+)(CH(2))(2)CO(2)H are shown to share the same transition state and ion-molecule complex forming either (CH(3))(2)S(+)H or (CH(2))(2)CO(2)H(+). Finally, EID shows a rich and relatively similar fragmentation channels for both protonated betaines, with radical cleavages being observed, including loss of ˙CH(3).  相似文献   

14.
A Born-Oppenheimer direct dynamics simulation of the O(+) + CH(4) reaction dynamics at hyperthermal energies has been carried out with the PM3 (ground quartet state) Hamiltonian. Calculations were performed at various collision energies ranging from 0.5 to 10 eV with emphasis on high energy collisions where this reaction is relevant to materials erosion studies in low Earth orbit and geosynchronous Earth orbit. Charge transfer to give CH(4)(+) is the dominant channel arising from O(+) + CH(4) collisions in this energy range, but most of the emphasis in our study is on collisions that lead to reaction. All energetically accessible reaction channels were found, including products containing carbon-oxygen bonds, which is in agreement with the results of recent experiments. After correcting for compensating errors in competing reaction channels, our excitation functions show quantitative agreement with experiment (for which absolute magnitudes of cross sections are available) at high collision energies (several eV). More detailed properties, such as translational and angular distributions, show qualitative agreement. The opacity function reveals a high selectivity for producing OH(+) at high impact parameters, CH(3)(+)/CH(2)(+)/H(2)O(+) at intermediate impact parameters, and H(2)CO(+)/HCO(+)/CO(+) at small impact parameters. Angular distributions for CH(3)(+)/CH(2)(+)/OH(+) are forward scattered at high collision energies which implies the importance of direct reaction mechanisms, while reaction complexes play an important role at lower energies, especially for the H(2)O(+) product. Finally, we find that the nominally spin-forbidden product CH(3)(+) + OH can be produced by a spin-allowed pathway that involves the formation of the triplet excited product CH(3)(+)(?(3)E). This explains why CH(3)(+) can have a high cross section, even at very low collision energies. The results of this work suggest that the PM3 method may be applied directly to the study of O(+) reactions with small alkane molecules and polymer surfaces.  相似文献   

15.
Ion imaging methods have enabled identification of three mechanisms by which (79)Br(+) and (35)Cl(+) fragment ions are formed following one-color multiphoton excitation of BrCl molecules in the wavelength range 324.6 > lambda > 311.7 nm. Two-photon excitation within this range populates selected vibrational levels (v'= 0-5) of the [X (2)Pi(1/2)]5ssigma Rydberg state. Absorption of a third photon results in branching between (i) photoionization (i.e. removal of the Rydberg electron-a traditional 2 + 1 REMPI process) and (ii)pi*<--pi excitation within the core, resulting in formation of one or more super-excited states with Omega= 1 and configuration [A (2)Pi(1/2)]5ssigma. The fate of the latter states involves a further branching. They can autoionize (yielding BrCl(+)(X (2)Pi) ions in a wider range of v(+) states than formed by direct 2 + 1 REMPI). Further, one-photon absorption by the parent ions resulting from direct ionization or autoionization leads to formation of Br(+) and (energy permitting) Cl(+) fragment ions. Alternatively, the super-excited molecules can fragment to neutral atoms, one of which is in a Rydberg state. Complementary ab initio calculations lead to the conclusion that the observed [Cl**[(3)P(J)]4s + Br/Br*] products result from direct dissociation of the photo-prepared super-excited states, whereas [Br**[(3)P(J)]5p + Cl/Cl*] product formation involves interaction between the [A (2)Pi(1/2)]5ssigma and [X (2)Pi(1/2)]5psigma Rydberg potentials at extended Br-Cl bond lengths. Absorption of one further photon by the resulting Br** and Cl** Rydberg atoms leads to their ionization, and thus their appearance in the Br(+) and Cl(+) fragment ion images.  相似文献   

16.
Yamamoto K  Motomizu S 《Talanta》1989,36(5):561-565
The dichlorocuprate(I) anion CuCl(-)(2) can be extracted as its ion-associates Q(+).CuCl(-)(2) with quaternary ammonium cations (Q(+)) into chloroform. The extraction constants K(ex) have been determined, and the log K(ex) values found for the various counter-ions used are 1.93 for (C(3)H(7))(4)N(+), 4.10 for (C(4)H(9))(4)N(+), 6.57 for (C(5)H(11))(4)N(+), 1.57 for C(8)H(17)N(+) (CH(3))(3), 2.83 for C(10)H(21)N(+) (CH(3))(3) 4.12 for C(12)H(25)N(+) (CH(3))(3) and 5.21 for C(14)H(29)N(+)(CH(3))(3), respectively. A linear relationship was found between log K(ex) and the total number of carbon atoms in Q(+); from the slope of the line, the contribution of a methylene group to log K(ex) was calculated to be 0.59. The extractability with alkyltrimethylammonium cations was larger than that with symmetrical tetra-alkylammonium cations and the difference in log K(ex) for two cations (one of each type) with the same number of carbon atoms was about 0.4. From the extraction constants obtained, the extractability of CuCl(-)(2) was found to lie between that of ReO(-)(4) and ClO(-)(4).  相似文献   

17.
A study of the reactions of a series of gas-phase cations (NH(4)(+), H(3)O(+), SF(3)(+), CF(3)(+), CF(+), SF(5)(+), SF(2)(+), SF(+), CF(2)(+), SF(4)(+), O(2)(+), Xe(+), N(2)O(+), CO(2)(+), Kr(+), CO(+), N(+), N(2)(+), Ar(+), F(+), and Ne(+)) with the three structural isomers of dichloroethene, i.e., 1,1-C(2)H(2)Cl(2), cis-1,2-C(2)H(2)Cl(2), and trans-1,2-C(2)H(2)Cl(2) is reported. The recombination energy (RE) of these ions spans the range of 4.7-21.6 eV. Reaction rate coefficients and product branching ratios have been measured at 298 K in a selected ion flow tube (SIFT). Collisional rate coefficients are calculated by modified average dipole orientation (MADO) theory and compared with experimental data. Thermochemistry and mass balance have been used to predict the most feasible neutral products. Threshold photoelectron-photoion coincidence spectra have also been obtained for the three isomers of C(2)H(2)Cl(2) with photon energies in the range of 10-23 eV. The fragment ion branching ratios have been compared with those of the flow tube study to determine the importance of long-range charge transfer. A strong influence of the isomeric structure of dichloroethene on the products of ion-molecule reactions has been observed for H(3)O(+), CF(3)(+), and CF(+). For 1,1-C(2)H(2)Cl(2) the reaction with H(3)O(+) proceeds at the collisional rate with the only ionic product being 1,1-C(2)H(2)Cl(2)H(+). However, the same reaction yields two more ionic products in the case of cis-1,2- and trans-1,2-C(2)H(2)Cl(2), but only proceeds with 14% and 18% efficiency, respectively. The CF(3)(+) reaction proceeds with 56-80% efficiency, the only ionic product for 1,1-C(2)H(2)Cl(2) being C(2)H(2)Cl(+) formed via Cl(-) abstraction, whereas the only ionic product for both 1,2-isomers is CHCl(2)(+) corresponding to a breaking of the C=C double bond. Less profound isomeric effects, but still resulting in different products for 1,1- and 1,2-C(2)H(2)Cl(2) isomers, have been found in the reactions of SF(+), CO(2)(+), CO(+), N(2)(+), and Ar(+). Although these five ions have REs above the ionization energy (IE) of any of the C(2)H(2)Cl(2) isomers, and hence the threshold for long-range charge transfer, the results suggest that the formation of a collision complex at short range between these ions and C(2)H(2)Cl(2) is responsible for the observed effects.  相似文献   

18.
Elimination pathways of the Br(2)(+) and Br(+) ionic fragments in photodissociation of 1,2- and 1,1-dibromoethylenes (C(2)H(2)Br(2)) at 233 nm are investigated using time-of-flight mass spectrometer equipped with velocity ion imaging. The Br(2)(+) fragments are verified not to stem from ionization of neutral Br(2), that is a dissociation channel of dibromoethylenes reported previously. Instead, they are produced from dissociative ionization of dibromoethylene isomers. That is, C(2)H(2)Br(2) is first ionized by absorbing two photons, followed by the dissociation scheme, C(2)H(2)Br(2)(+) + hv→Br(2)(+) + C(2)H(2). 1,2-C(2)H(2)Br(2) gives rise to a bright Br(2)(+) image with anisotropy parameter of -0.5 ± 0.1; the fragment may recoil at an angle of ~66° with respect to the C=C bond axis. However, this channel is relatively slow in 1,1-C(2)H(2)Br(2) such that a weak Br(2)(+) image is acquired with anisotropy parameter equal to zero, indicative of an isotropic recoil fragment distribution. It is more complicated to understand the formation mechanisms of Br(+). Three routes are proposed for dissociation of 1,2-C(2)H(2)Br(2), including (a) ionization of Br that is eliminated from C(2)H(2)Br(2) by absorbing one photon, (b) dissociation from C(2)H(2)Br(2)(+) by absorbing two more photons, and (c) dissociation of Br(2)(+). Each pathway requires four photons to release one Br(+), in contrast to the Br(2)(+) formation that involves a three-photon process. As for 1,1-C(2)H(2)Br(2), the first two pathways are the same, but the third one is too weak to be detected.  相似文献   

19.
The interaction of C2H5X, 1-C3H7X, 1-C4H9X, where X = I, Br, Cl, with strong (1 x 10(13)-1.2 x 10(14) W/cm2) 35 ps laser pulses at 1064 nm is studied by means of time-of-flight mass spectrometry. The multielectron ionization following the C-X bond elongation has been verified for the studied molecules. By combination of the intensity dependence of the ion yields, the estimated kinetic energies of the released fragment ions, and their angular distributions, we have identified the different dissociation channels of the transient multiply charged parent ions. From the dependence on the laser intensity of the ratio of the doubly charged halogen ions to the singly charged ones, it is concluded that the molecular coupling with the laser field increases with the molecular size.  相似文献   

20.
The monovalent cations of Na(+), K(+), Rb(+), and Cs(+) derived from the highly electropositive alkali metals represent prototypical charged spheres that are mainly subject to relatively simple electrostatic and solvation (hydration) forces. We now find that the largest of these Rb(+) and Cs(+) are involved in rather strong cation...pi(arene) interactions when they are suitably disposed with the ambifunctional hexasubstituted benzene C(6)E(6). The ether tentacles (E = methoxymethyl) allow these cations to effect eta(1)-bonding to the benzene center in a manner strongly reminiscent of the classical sigma-arene complexes with positively charged electrophiles where Z(+) = CH(3)(+), Br(+), Cl(+), Et(3)Si(+), etc. The somewhat smaller potassium cation is involved in a similar M(+)...pi(arene) interaction that leads to eta(2)-bonding with the aromatic center in the pi-mode previously defined in the well-known series of silver(I)/arene complexes. We can find no evidence for significant Na(+)... pi(arene) interaction under essentially the same conditions. As such, the sigma-structure of the Rb(+) and Cs(+) complexes and pi-structure of the K(+) complex are completely integrated into the continuum of sigma-pi bondings of various types of electrophilic (cationic) acceptors with arene donors that were initially identified by Mulliken as charge-transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号