首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Synthesis of the perfluorinated 1,3,5-triazapentadiene [N{(CF(3))C(C(6)F(5))N}(2)]H and the use of its conjugate base as a supporting ligand for the isolation of silver(i) and copper(i) complexes are reported. Some of the related chemistry involving [N{(C(3)F(7))C(C(6)F(5))N}(2)](-) (that has bulkier -C(3)F(7) groups on the 1,3,5-triazapentadienyl ligand backbone) is also presented. X-ray crystallographic data show a wide variety of structures ranging from intermolecular, hydrogen-bonded chain structure for [N{(CF(3))C(C(6)F(5))N}(2)]H with a twisted W-shaped N(3)C(2) core, monomeric [N{(CF(3))C(C(6)F(5))N}(2)]Ag(CN(t)Bu)(2) and [N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag(CN(t)Bu)(2) where the κ(1)-bonded triazapentadienyl ligand bonding to the metal fragment via the central nitrogen atom, monomeric [N{(CF(3))C(C(6)F(5))N}(2)]Ag(PPh(3))(2) and [N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag(PPh(3))(2) that feature κ(1)-bonded triazapentadienyl ligand bonding to the metal fragment via one of the terminal nitrogen atoms, to that of the monomeric [N{(CF(3))C(C(6)F(5))N}(2)]Cu(CN(t)Bu)(2) containing a κ(2)-bonded triazapentadienyl ligand and a U-shaped NCNCN ligand backbone. The isocyanide adducts show relatively high ν(CN) values in the IR spectra.  相似文献   

2.
Dias HV  Flores JA 《Inorganic chemistry》2007,46(15):5841-5843
The synthesis and X-ray structures of gold(I) adducts supported by beta-diketiminates have been reported. {[HC{(H)C(2,4,6-Br(3)C(6)H(2))N}(2)]Au}(2) and {[HC{(H)C(Dipp)N}(2)]Au}(2) [Dipp = 2,6-(i-Pr)(2)C(6)H(3)] are easily isolable solids and feature 12-membered macrocyclic ring structures. beta-Diketiminate ligands adopt a W-shaped conformation. Gold atoms are bonded to the nitrogen atoms in a linear fashion. (1)H NMR signals corresponding to the protons at the beta-diketiminate ligand beta-C position of the gold adducts appear at a notably high downfield region.  相似文献   

3.
A family of rare earth metal bis(amide) complexes bearing monoanionic amidinate [RC(N-2,6-Me(2)C(6)H(3))(2)](-) (R = cyclohexyl (Cy), phenyl (Ph)) as ancillary ligands were synthesized and characterized. One-pot salt metathesis reaction of anhydrous LnCl(3) with one equivalent of amidinate lithium [RC(N-2,6-Me(2)C(6)H(3))(2)]Li, following the introduction of two equivalents of NaN(SiMe(3))(2) in THF at room temperature afforded the neutral and unsolvated mono(amidinate) rare earth metal bis(amide) complexes [RC(N-2,6-Me(2)C(6)H(3))(2)]Y[N(SiMe(3))(2)](2) (R = Cy (1); R = Ph (2)), and the "ate" mono(amidinate) rare earth metal bis(amide) complex [CyC(N-2,6-Me(2)C(6)H(3))(2)]Lu[N(SiMe(3))(2)](2)(μ-Cl)Li(THF)(3) (3) in 61-72% isolated yields. These complexes were characterized by elemental analysis, NMR spectroscopy, FT-IR spectroscopy, and X-ray single crystal diffraction. Single crystal structural determination revealed that the central metal in complexes 1 and 2 adopts a distorted tetrahedral geometry, and in complex 3 forms a distorted trigonal bipyramidal geometry. In the presence of AlMe(3), and in combination with one equimolar amount of [Ph(3)C][B(C(6)F(5))(4)], complexes 1 and 2 showed high activity towards isoprene polymerization to give high molecular weight polyisoprene (M(n) > 10(4)) with good cis-1,4 selectivity (>90%).  相似文献   

4.
The neutral and cationic dinuclear gold(I) compounds [(μ-N-N)(AuR)(2)] (N-N = 2,2'-azobispyridine (2-abpy), 4,4'-azobispyridine (4-abpy); R = C(6)F(5), C(6)F(4)OC(12)H(25)-p, C(6)F(4)OCH(2)C(6)H(4)OC(12)H(25)-p) and [(μ-N-N){Au(PR(3))}(2)](CF(3)SO(3))(2) (N-N = 2-abpy, 4-abpy, R = Ph, Me) have been obtained by displacement of a weakly coordinated ligand by an azobispyridine ligand. The corresponding silver(I) dinuclear [(μ-2-abpy){Ag(CF(3)SO(3))(PPh(3))}(2)] and polynuclear [{Ag(CF(3)SO(3))(4-abpy)}(n)] compounds have been obtained. The molecular structures of [(μ-2-abpy){Au(PPh(3))}(2)](CF(3)SO(3))(2) and [(μ-4-abpy){Au(PMe(3))}(2)](CF(3)SO(3))(2) have been confirmed by X-ray diffraction studies and feature linear gold(I) centers coordinated by pyridyl groups, and non-coordinated azo groups. In contrast the X-ray structure of [(2-abpy){Ag(CF(3)SO(3))(PPh(3))}(2)] shows tetracoordinated silver(I) centers involving chelating N-N coordination by pyridyl and azo nitrogen atoms. The gold(I) compounds with a long alkoxy chain do not behave as liquid crystals, and decompose before their melting point. The soluble gold(I) derivatives are photosensitive in solution and isomerize to the cis azo isomer under UV irradiation, returning photochemically or thermally to the most stable initial trans isomer. The silver(I) derivative [(2-abpy){Ag(CF(3)SO(3))(PPh(3))}(2)] also photoisomerizes in solution under UV irradiation, showing that its solid state structure, which would block isomerization by azo coordination, is easily broken. These processes have been monitored by UV-vis absorption and (1)H NMR spectroscopy. All these compounds are non-emissive in the solid state, even at 77 K.  相似文献   

5.
Treatment of 1,3,5-triazapentadienes [N{(C3F7)C(Mes)N}2]H and [N{(C3F7)C(Dipp)N}2]H (where Mes = 2,4,6-Me3C6H2; Dipp = 2,6-Pr(i)2C6H3) with n-BuLi in hexane, followed by the crystallization from hexane-THF mixture afforded the corresponding lithium 1,3,5-triazapentadienyl complexes as their THF solvates. X-Ray crystallographic analyses revealed that [N{(C3F7)C(Mes)N}2]Li(THF)2 and [N{(C3F7)C(Dipp)N}2]Li(THF) are monomeric in the solid state. [N{(C3F7)C(Mes)N}2]Li(THF)2 has a four-coordinate lithium center with a distorted tetrahedral geometry, and features a boat-shaped C2N3Li metallacycle. [N{(C3F7)C(Dipp)N}2]Li(THF) has a three-coordinate lithium atom and a planar, U-shaped C2N3 ligand backbone. The synthesis, solid-state structure, and 1H and 19F NMR spectroscopic details of [N{(C3F7)C(Mes)N}2]H are also reported.  相似文献   

6.
[Na{cyclo-(P(5)tBu(4))}] (1) reacts with [CuCl(PCyp(3))(2)] (Cyp=cyclo-C(5)H(9)) and [CuCl(PPh(3))(3)] (1:1) to give the corresponding copper(I) complexes with a tetra-tert-butylcyclopentaphosphanide ligand, [Cu{cyclo- (P(5)tBu(4))}(PCyp(3))(2)] (2) and [Cu{cyclo-(P(5)tBu(4))}(PPh(3))(2)] (3). The CuCl adduct of 2, [Cu(2)(mu-Cl){cyclo-(P(5)tBu(4))}(PCyp(3))(2)] (4), was obtained from the reaction of 1 with [CuCl(PCyp(3))(2)] (1:2). Compounds 2 and 3 rearrange, even at -27 degrees C, to give [Cu(4){cyclo- (P(4)tBu(3))PtBu}(4)] (5), in which ring contraction of the [cyclo-(P(5)tBu(4))](-) anion has occurred. The reaction of 1 with [AgCl(PCyp(3))](4) or [AgCl(PPh(3))(2)] (1:1) leads to the formation of [Ag(4){cyclo-(P(4)tBu(3))PtBu}(4)] (6). Intermediates, which are most probably mononuclear, "[Ag{cyclo-(P(5)tBu(4))}(PR(3))(2)]" (R=Cyp, Ph) could be detected in the reaction mixtures, but not isolated. Finally, the reaction of 1 with [AuCl(PCyp(3))] (1:1) yielded [Au{cyclo-(P(5)tBu(4))}(PCyp(3))] (7), whereas an inseparable mixture of [Au(3){cyclo-(P(5)tBu(4))}(3)] (8) and [Au(4){cyclo-(P(4)tBu(3))PtBu}(4)] (9) was obtained from the analogous reaction with [AuCl(PPh(3))]. Complexes 3-7 were characterised by (31)P NMR spectroscopy, and X-ray crystal structures were determined for 3-9.  相似文献   

7.
Treatment of M[N(SiMe(3))(2)](2) (M = Mn, Fe, Co) with various bulky beta-diketimines afforded a variety of new three-coordinate complexes which were characterized by UV-vis, (1)H NMR and IR spectroscopy, magnetic measurements, and X-ray crystallography. Reaction of the beta-diketimine H(Dipp)NC(Me)CHC(Me)N(Dipp) (Dipp(2)N(wedge)NH; Dipp = C(6)H(3)-2,6-Pr(i)(2)) with M[N(SiMe(3))(2)](2) (M = Mn or Co) gave Dipp(2)N(wedge)NMN(SiMe(3))(2) (M = Mn, 1; Co, 3) while the reaction of Fe[N(SiMe(3))(2)](2) with Ar(2)N(wedge)NH (Ar = Dipp, C(6)F(5), Mes, C(6)H(3)-2,6-Me(2), or C(6)H(3)-2,6-Cl(2)) afforded the series of iron complexes Ar(2)N(wedge)NFe[N(SiMe(3))(2)] (Ar = Dipp, 2a; C(6)F(5), 2b; Mes, 2c; C(6)H(3)-2,6-Me(2), 2d; C(6)H(3)-2,6-Cl(2), 2e). This represents a new synthetic route to beta-diketiminate complexes of these metals. The four-coordinate bis-beta-diketiminate complex Fe[N(wedge)N(C(6)F(5))(2)](2), 4, was also isolated as a byproduct from the synthesis of 2b. Direct reaction of the Dipp(2)N(wedge)NLi with CoCl(2) gave the "ate" salt Dipp(2)N(wedge)NCoCl(2)Li(THF)(2), 5, in which the lithium chloride has formed a complex with Dipp(2)N(wedge)NCoCl through chloride bridging. The Fe(III) species Dipp(2)N(wedge)NFeCl(2), 6, was obtained cleanly from the reaction of FeCl(3) with Dipp(2)N(wedge)NLi. Magnetic measurements showed that all the complexes have a high spin configuration. The different substituents in the series of iron complexes 2a-e allowed assignment of their paramagnetically shifted (1)H NMR spectra. The X-ray crystal structures 1-2d and 3 showed that they have a distorted three-coordinate planar configuration at the metals whereas complexes 4-6 have highly distorted four-coordinate geometries.  相似文献   

8.
Lithium aluminates Li[Al(O-2,6-Me(2)C(6)H(3))R'(3)] (R' = Et, Ph) react with the μ(3)-alkylidyne oxoderivative ligands [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CR)] [R = H (1), Me (2)] to afford the aluminum-lithium-titanium cubane complexes [{R'(3)Al(μ-O-2,6-Me(2)C(6)H(3))Li}(μ(3)-O)(3){Ti(η(5)-C(5)Me(5))}(3)(μ(3)-CR)] [R = H, R' = Et (5), Ph (7); R = Me, R' = Et (6), Ph (8)]. Complex 7 evolves with the formation of a lithium dicubane species and a Li{Al(μ-O-2,6-Me(2)C(6)H(3))Ph(3)}(2)] unit.  相似文献   

9.
Flores JA  Dias HV 《Inorganic chemistry》2008,47(11):4448-4450
A rare gold(I) ethylene complex and the closely related copper(I) ethylene adduct have been isolated using [N{(C3F7)C(2,6-Cl2C6H3)N}2]- as the supporting ligand. [N{(C3F7)C(2,6-Cl2C6H3)N}2]Au(C2H4) (1) is an air-stable solid. It features a U-shaped triazapentadienyl ligand backbone and a three-coordinate, trigonal-planar gold center. The copper(I) adduct [N{(C3F7)C(2,6-Cl2C6H3)N}2]Cu(C2H4) (2) also has a similar structure. The 13C NMR signal corresponding to the ethylene carbons of 1 appears at about 64 ppm upfield from the free ethylene, while the ethylene carbons of 2 show a relatively smaller (39 ppm) upfield shift. [N{(C3F7)C(2,6-Cl2C6H3)N}2]M(C2H4) (M=Cu, Au) mediate carbene-transfer reactions from ethyl diazoacetate to saturated and unsaturated hydrocarbons.  相似文献   

10.
The lutidine derivative (2,6-Me(2))(4-Bpin)C(5)H(2)N when combined with B(C(6)F(5))(3) yields a frustrated Lewis pair (FLP) which reacts with H(2) to give the salt [(2,6-Me(2))(4-Bpin)C(5)H(2)NH][HB(C(6)F(5))(3)] (1). Similarly 2,2'-(C(5)H(2)(4,6-Me(2))N)(2) and (4,4'-(C(5)H(2)(4,6-Me(2))N)(2) were also combined with B(C(6)F(5))(3) and exposed to H(2) to give [(2,2'-HN(2,6-Me(2))C(5)H(2)C(5)H(2)(4,6-Me(2))N][HB(C(6)F(5))(3)] (2) and [(4,4'-HN(2,6-Me(2))C(5)H(2)C(5)H(2)(2,6-Me(2))N] [HB(C(6)F(5))(3)] (3), respectively. The mono-pyridine-N-oxide 4,4'-N(2,6-Me(2))C(5)H(2)C(5)H(2)(2,6-Me(2))NO formed the adduct (4,4'-N(2,6-Me(2))C(5)H(2)C(5)H(2)(2,6-Me(2))NO)(B(C(6)F(5))(3)) (4) which reacts further with B(C(6)F(5))(3) and H(2) to give [(4,4'-HN(2,6-Me(2))C(5)H(2)C(5)H(2)(2,6-Me(2))NO)B(C(6)F(5))(3)] [HB(C(6)F(5))(3)] (5). In a related sense, 2-amino-6-CF(3)-C(5)H(3)N reacts with B(C(6)F(5))(3) to give (C(5)H(3)(6-CF(3))NH)(2-NH(B(C(6)F(5))(3))) (6). Similarly, the species, 2-amino-quinoline, 8-amino-quinoline and 2-hydroxy-6-methyl-pyridine were reacted with B(C(6)F(5))(3) to give the products as (C(9)H(6)NH)(2-NHB(C(6)F(5))(3)) (7), (C(9)H(6)N)(8-NH(2)B(C(6)F(5))(3)) (8) and (C(5)H(3)(6-Me)NH)(2-OB(C(6)F(5))(3)) (9), respectively; while 2-amino-6-picoline, 2-amino-6-CF(3)-pyridine, 2-amino-quinoline, 8-amino-quinoline and 2-hydroxy-6-methyl-pyridine react with ClB(C(6)F(5))(2) to give the species (C(5)H(3)(6-R)NH)(2-NH(ClB(C(6)F(5))(2))) (R = Me (10), R = CF(3) (11)) (C(9)H(6)NH)(2-NH(ClB(C(6)F(5))(2))) (12), (C(9)H(6)N)(8-NH(2)ClB(C(6)F(5))(2)) (13) and (C(5)H(3)(6-Me)NH)(2-OClB(C(6)F(5))(2)) (14), respectively. In a similar manner, 2-amino-6-picoline and 2-amino-quinoline react with B(C(6)F(5))(2)H to give (C(5)H(3)(6-Me)NH)(2-NH(HB(C(6)F(5))(2))) (15) and (C(9)H(6)NH)(2-NH(HB(C(6)F(5))(2))) (16). The corresponding reaction of 8-amino-quinoline yields (C(9)H(6)N)(8-NHB(C(6)F(5))(2)) (17). In a similar fashion, reaction of 2-amino-6-CF(3)-pyridine resulted in the formation of (18) formulated as (C(5)H(3)(6-CF(3))N)(2-NH(B(C(6)F(5))(2)). Finally, treatment of 15 with iPrMgCl gave (C(9)H(6)N)(2-NH(B(C(6)F(5))(2))) (19). Crystallographic studies of 1, 2, 4, 6, 7, 10, 11, 12 and 15 are reported.  相似文献   

11.
Reactions of β-diketiminato group 2 silylamides, [HC{(Me)CN(2,6-(i)Pr(2)C(6)H(3))}(2)M(THF)(n){N(SiMe(3))(2)}] (M = Mg, n = 0; M = Ca, Sr, n = 1), and an equimolar quantity of pyrrolidine borane, (CH(2))(4)NH·BH(3), were found to produce amidoborane derivatives of the form [HC{(Me)CN(2,6-(i)Pr(2)C(6)H(3))}(2)MN(CH(2))(4)·BH(3)]. In reactivity reminiscent of analogous reactions performed with dimethylamine borane, addition of a second equivalent of (CH(2))(4)NH·BH(3) to the Mg derivative induced the formation of a species, [HC{(Me)CN(2,6-(i)Pr(2)C(6)H(3))}(2)Mg{N(CH(2))(4) BH(2)NMe(2)BH(3)}], containing an anion in which two molecules of the amine borane substrate have been coupled together through the elimination of one molecule of H(2). Both this species and a calcium amidoborane derivative have been characterised by X-ray diffraction techniques and the coupled species is proposed as a key intermediate in catalytic amine borane dehydrocoupling, in reactivity dictated by the charge density of the group 2 centre involved. On the basis of further stoichiometric reactions of the homoleptic group 2 silylamides, [M{N(SiMe(3))(2)}(2)] (M = Mg, Ca, Sr, Ba), with (CH(3))(2)NH·BH(3) and (i)Pr(2)NH·BH(3) reactivity consistent with successive amidoborane β-hydride elimination and [R(2)N[double bond, length as m-dash]BH(2)] insertion is described as a means to induce the B-N dehydrocoupling between amine borane substrates.  相似文献   

12.
New silver(I) complexes have been synthesized from the reaction of AgNO(3), monodentate tertiary phosphanes PR(3) (PR(3) = P(C(6)H(5))(3), P(o-C(6)H(4)CH(3))(3), P(m-C(6)H(4)CH(3))(3), P(p-C(6)H(4)CH(3))(3), PCH(3)(C(6)H(5))(2)) and two novel electron withdrawing ligands: potassium dihydrobis(3-nitropyrazol-1-yl)borate and potassium dihydrobis(3-trifluoromethylpyrazol-1-yl)borate. These compounds have been characterized by elemental analyses, FT-IR, ESI-MS and multinuclear ((1)H, (19)F and (31)P) NMR spectroscopy. Solid state structures of the potassium salts K[H(2)B(3-(NO(2))pz)(2)] and K[H(2)B(3-(CF(3))pz)(2)] have been reported. They form polymeric networks due to intermolecular contacts of various types between the potassium ion and atoms of the neighboring molecules. The silver adducts [H(2)B(3-(NO(2))pz)(2)]Ag[P(C(6)H(5))(3)](2) and [H(2)B(3-(NO(2))pz)(2)]Ag[P(p-C(6)H(4)CH(3))(3)] have pseudo tetrahedral and trigonal planar silver sites, respectively. The bis(pyrazolyl)borate ligand acts as a kappa(2)-N(2) donor. The nitro-substituents are coplanar with the pyrazolyl rings in all these adducts indicating efficient electron delocalization between the two units. The [H(2)B(3-(CF(3))pz)(2)]Ag[P(C(6)H(5))(3)] complex has been obtained from re-crystallization of {[H(2)B(3-(CF(3))pz)(2)]Ag[P(C(6)H(5))(3)](2)} in a dichloromethane-diethyl ether solution; it is a three-coordinate, trigonal planar silver complex.  相似文献   

13.
Four new potentially polytopic nitrogen donor ligands based on the 1,3,5-triazine fragment, L(1)-L(4) (L(1) = 2-chloro-4,6-di(1H-pyrazol-1-yl)-1,3,5-triazine, L(2) = N,N'-bis(4,6-di(1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)ethane-1,2-diamine, L(3) = 2,4,6-tris(tri(1H-pyrazol-1-yl)methyl)-1,3,5-triazine, and L(4) = 2,4,6-tris(2,2,2-tri(1H-pyrazol-1-yl)ethoxy)-1,3,5-triazine) have been synthesized and characterized. The X-ray crystal structure of L(3) confirms that its molecular nature consists of a 1,3,5-triazine ring bearing three tripodal tris(pyrazolyl) arms. L(1), L(2), and L(4) react with Cu(I), Cu(II), Pd(II) and Ag(I) salts yielding mono-, di-, and oligonuclear derivatives: [Cu(L(1))(Cy(3)P)]ClO(4), [{Ag(2)(L(2))}(CF(3)SO(3))(2)]·H(2)O, [Cu(2)(L(2))(NO(3))(2)](NO(3))(2)·H(2)O, [Cu(2)(L(2))(CH(3)COO)(2)](CH(3)COO)(2)·3H(2)O, [Pd(2)(L(2))(Cl)(4)]·2H(2)O, [Ru(L(2))(Cl)(OH)]·CH(3)OH, [Ag(3)(L(4))(2)](CF(3)SO(3))(3) and [Ag(3)(L(4))(2)](BF(4))(3). The interaction of L(3) with Ag(I), Cu(II), Zn(II) and Ru(II) complexes unexpectedly produced the hydrolysis of the ligand with formation, in all cases, of tris(pyrazolyl)methane (TPM) derivatives. In detail, the already known [Ag(TPM)(2)](CF(3)SO(3)) and [Cu(TPM)(2)](NO(3))(2), as well as the new [Zn(TPM)(2)](CF(3)SO(3))(2) and [Ru(TMP)(p-cymene)]Cl(OH)·2H(2)O complexes have been isolated. Single-crystal XRD determinations on the latter derivatives confirm their formulation, evidencing, for the Ru(II) complex, an interesting supramolecular arrangement of the anions and crystallization water molecules.  相似文献   

14.
Unsolvated, trinuclear, homometallic, rare-earth-metal multimethyl methylidene complexes [{(NCN)Ln(μ(2)-CH(3))}(3)(μ(3)-CH(3))(μ(3)-CH(2))] (NCN = L = [PhC{NC(6)H(4)(iPr-2,6)(2)}(2)](-); Ln = Sc (2a), Lu (2b)) have been synthesized by treatment of [(L)Ln{CH(2)C(6)H(4)N(CH(3))(2)-o}(2)] (Ln = Sc (1a), Lu (1b)) with two equivalents of AlMe(3) in toluene at ambient temperature in good yields. Treatment of 1 with three equivalents of AlMe(3) gives the heterometallic trinuclear complexes [(L)Ln(AlMe(4))(2)] (Ln = Sc (3a), Lu (3b)) in good yields. Interestingly, 2 can also be generated by recrystallization of 3 in THF/toluene, thereby indicating that the THF molecule can also induce C-H bond activation of 2. Reaction of 2 with one equivalent of ketones affords the trinuclear homometallic oxo-trimethyl complexes [{(L)Ln(μ(2) -CH(3))}(3) (μ(3)-CH(3))(μ(3)-O)] (Ln = Sc(4a), Lu(4b)) in high yields. Complex 4b reacts with one equivalent of cyclohexanone to give the methyl abstraction product [{(L)Lu(μ(2) -CH(3) )}(3) (μ(3) -OC(6)H(9))(μ(3)-O)] (5b), whereas reaction of 4b with acetophenone forms the insertion product [{(L)Lu(μ(2)-CH(3))}(3){μ(3)-OCPh(CH(3))(2)}(μ(3)-O)] (6b). Complex 4a is inert to ketone under the same conditions. All these new complexes have been characterized by elemental analysis, NMR spectroscopy, and confirmed by X-ray diffraction determination.  相似文献   

15.
The reaction between {(Me(3)Si)(2)CH}PCl(2) (4) and one equivalent of either [C(6)H(4)-2-NMe(2)]Li or [2-C(5)H(4)N]ZnCl, followed by in situ reduction with LiAlH(4) gives the secondary phosphanes {(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))PH (5) and {(Me(3)Si)(2)CH}(2-C(5)H(4)N)PH (6) in good yields as colourless oils. Metalation of 5 with Bu(n)Li in THF gives the lithium phosphanide [[{(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))P]Li(THF)(2)] (7), which undergoes metathesis with either NaOBu(t) or KOBu(t) to give the heavier alkali metal derivatives [[{(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))P]Na(tmeda)] (8) and [[{(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))P]K(pmdeta)] (9) after recrystallization in the presence of the corresponding amine co-ligand [tmeda = N,N,N',N'-tetramethylethylenediamine, pmdeta = N,N,N',N',N'-pentamethyldiethylenetriamine]. The pyridyl-functionalized phosphane 6 undergoes deprotonation on treatment with Bu(n)Li to give a red oil corresponding to the lithium compound [{(Me(3)Si)(2)CH}(2-C(5)H(4)N)P]Li (10) which could not be crystallized. Treatment of this oil with NaOBu(t) gives the sodium derivative [{[{(Me(3)Si)(2)CH}(2-C(5)H(4)N)P]Na}(2) x (Et(2)O)](2) (11), whilst treatment of with KOBu(t), followed by recrystallization in the presence of pmdeta gives the complex [[{(Me(3)Si)(2)CH}(2-C(5)H(4)N)P]K(pmdeta)](2) (12). Compounds 5-12 have been characterised by (1)H, (13)C{(1)H} and (31)P{(1)H} NMR spectroscopy and elemental analyses; compounds 7-9, and 12 have additionally been characterised by X-ray crystallography. Compounds 7-9 crystallize as discrete monomers, whereas 11 crystallizes as an unusual dimer of dimers and 12 crystallizes as a dimer with bridging pyridyl-phosphanide ligands.  相似文献   

16.
This paper describes the synthesis and selected reactions of a series of crystalline mono(beta-diiminato)yttrium chlorides , , , , , , and . The X-ray structure of each has been determined, as well as of [YCl()(2)] (), [Y()(2)OBu(t)] () and [Y{CH(SiMe(3))(2)}(thf)(mu-Cl)(2)Li(OEt(2))(2)(mu-Cl)](2) (). The N,N'-kappa(2)-beta-diiminato ligands were [{N(R)C(Me)}(2)CH](-) [R = C(6)H(4)Pr(i)-2 (); R = C(6)H(4)Bu(t)-2 (); R = C(6)H(3)Pr(i)(2)-2,6 ()], [{N(SiMe(3))C(Ph)}(2)CH)](-) () and [{N(C(6)H(3)Pr(i)(2)-2,6)C(H)}(2)CPh](-) (). Equivalent portions of Li[L(x)] and YCl(3) in Et(2)O under mild conditions yielded [Y(mu-Cl)(L(x))(mu-Cl)(2)Li(OEt(2))(2)](2) [L(x) = () or ()] and [Y(mu-Cl)()(mu-Cl)Li(OEt(2))(2)(mu-Cl)](2) () or its thf (instead of Et(2)O) equivalent . Each of the Li(OEt(2))(2)Cl(2) moieties is bonded in a terminal () or bridging () mode with respect to the two Y atoms; the difference is attributed to the greater steric demand of than or . Under slightly more forcing conditions, YCl(3) and Li() (via) gave the lithium-free complex [YCl(2)()(thf)(2)] (). Two isoleptic compounds and (having in place of in , and , respectively) were obtained from YCl(3) and an equivalent portion of K[] and Na[], respectively; under the same conditions using Na[], the unexpected product was [YCl()(2)] () (i.e. incorporating only one half of the YCl(3)). A further unusual outcome was in the formation of from and 2 Li[CH(SiMe(3))(2)]. Compound [Y(){N(H)C(6)H(3)Pr(i)(2)-2,6}(thf)(mu(3)-Cl)(2)K](2).4Et(2)O (), obtained from and K[N(H)C(6)H(3)Pr(i)(2)-2,6], is noteworthy among group 3 or lanthanide metal (M) compounds for containing MClKCl (M = Y) moieties.  相似文献   

17.
The reaction of cis-[PtCl(2)(dmso)2] with ligands 4-ClC(6)H(4)CHNCH(2)C(6)H(5) (1a) and 4-ClC(6)H(4)CHNCH(2)(4-ClC(6)H(4)) (1b) in the presence of sodium acetate and using either methanol or toluene as solvent produced the corresponding five-membered endo-metallacycles [PtCl{(4-ClC(6)H(3))CHNCH(2)C(6)H(5)}{SOMe(2)}] (2a) and [PtCl{(4-ClC(6)H(3))CHNCH(2)(4'-ClC(6)H(4))}{SOMe(2)}] (2b). An analogous reaction for ligands 2,6-Cl(2)C(6)H(3)CHNCH(2)C(6)H(5) (1c) and 2,6-Cl(2)C(6)H(3)CHNCH(2)(4-ClC(6)H(4)) (1d) produced five-membered exo-metallacycles [PtCl{(2,6-Cl(2)C(6)H(3))CHNCH(2)C(6)H(4)}{SOMe(2)}] (2c) and [PtCl{(2,6-Cl(2)C(6)H(3))CHNCH(2)(4'-ClC(6)H(3))}{SOMe(2)}] (2d) when the reaction was carried out in methanol and seven-membered endo-platinacycles [PtCl{(MeC(6)H(3))ClC(6)H(3)CHNCH(2)C(6)H(4)}{SOMe(2)}] (3c) and [PtCl{(MeC(6)H(3))ClC(6)H(3)CHNCH(2)(4'-ClC(6)H(3))}{SOMe(2)}] (3d) when toluene was used as a solvent. The reaction of 2,4,6-(CH(3))(3)C(6)H(2)CHNCH(2)(4-ClC(6)H(4)) (1e) produced in both solvents an exo-platinacycle [PtCl{(2,4,6-(CH(3))(3)C(6)H(2))CHNCH(2)(4'-ClC(6)H(3))}{SO(CH(3))(2)}] (2e). Cyclometallation of 4-chlorobenzylamine was also achieved to produce compound [PtCl{(4-ClC(6)H(3))CH(2)NH(2)}{SOMe(2)}] (2g). The reactions of endo- and exo-metallacycles with phosphines evidenced the higher lability of the Pt-N bond in exo-metallacycles while a comparative analysis of the crystal structures points out a certain degree of aromaticity in the endo-metallacycle.  相似文献   

18.
The carbophosphazene and cyclophosphazene hydrazides, [{NC(N(CH(3))(2))}(2){NP{N(CH(3))NH(2)}(2)}] (1) and [N(3)P(3)(O(2)C(12)H(8))(2){N(CH(3))NH(2)}(2)] were condensed with o-vanillin to afford the multisite coordination ligands [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-OH)(m-OCH(3))}(2)}] (2) and [{N(2)P(2)(O(2)C(12)H(8))(2)}{NP{N(CH(3))N═CH-C (6)H(3)-(o-OH)(m-OCH(3))}(2)}] (3), respectively. These ligands were used for the preparation of heterometallic complexes [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuCa(NO(3))(2)}] (4), [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{Cu(2)Ca(2)(NO(3))(4)}]·4H(2)O (5), [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuDy(NO(3))(4)}]·CH(3)COCH(3) (6), [{NP(O(2)C(12)H(8))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuDy(NO(3))(3)}] (7), and [{NP(O(2)C(12)H(8))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuTb(NO(3))(3)}] (8). The molecular structures of these compounds reveals that the ligands 2 and 3 possess dual coordination pockets which are used to specifically bind the transition metal ion and the alkaline earth/lanthanide metal ion; the Cu(2+)/Ca(2+), Cu(2+)/Tb(3+), and Cu(2+)/Dy(3+) pairs in these compounds are brought together by phenoxide and methoxy oxygen atoms. While 4, 6, 7, and 8 are dinuclear complexes, 5 is a tetranuclear complex. Detailed magnetic properties on 6-8 reveal that these compounds show weak couplings between the magnetic centers and magnetic anisotropy. However, the ac susceptibility experiments did not reveal any out of phase signal suggesting that in these compounds slow relaxation of magnetization is absent above 1.8 K.  相似文献   

19.
Two molecules of C(2)(CO(2)Me)(2) or isocyanides could be added to the title hydride complex under mild conditions to give dienyl-[W(2)Cp(2){μ-η(1),κ:η(2)-C(CO(2)Me)=C(CO(2)Me)C(CO(2)Me)=CH(CO(2)Me)}(μ-PCy(2))(CO)(2)] (Cp = η(5)-C(5)H(5)), diazadienyl-[W(2)Cp(2){μ-κ,η:κ,η-C{CHN(4-MeO-C(6)H(4))}N(4-MeO-C(6)H(4))}(μ-PCy(2))(CO)(2)] or aminocarbyne-bridged derivatives [W(2)Cp(2){μ-CNH(2,6-Me(2)C(6)H(3))}(μ-PCy(2)){CN(2,6-Me(2)C(6)H(3))}(CO)]. In contrast, its reaction with excess (4-Me-C(6)H(4))C(O)H gave the C-O bond cleavage products [W(2)Cp(2){CH(2)(4-Me-C(6)H(4))}(O)(μ-PCy(2))(CO)(2)] and [W(2)Cp(2){μ-η:η,κ-C(O)CH(2)(4-Me-C(6)H(4))}(O)(μ-PCy(2))(CO)].  相似文献   

20.
A series of ruthenium complexes was isolated and characterized in the course of reactions aimed at studying the reduction of hydrazine to ammonia in bimetallic systems. The diruthenium complex {[HPNPRu(N(2))](2)(μ-Cl)(2)}(BF(4))(2) (2) (HPNP = HN(CH(2)CH(2)P(i)Pr(2))(2)) reacted with 1 equiv of hydrazine to generate [(HPNPRu)(2)(μ(2)-H(2)NNH(2))(μ-Cl)(2)](BF(4))(2) (3) and with an excess of the reagent to form [HPNPRu(NH(3))(κ(2)-N(2)H(4))](BF(4))Cl (5). When phenylhydrazine was added to 2, the diazene species [(HPNPRu)(2)(μ(2)-HNNPh)(μ-Cl)(2)](BF(4))(2) (4) was obtained. Treatment of 2 with H(2) or CO yielded {[HPNPRu(H(2))](2)(μ-Cl)(2)}(BF(4))(2) (7) and [HPNPRuCl(CO)(2)]BF(4) (8), respectively. Abstraction of chloride using AgOSO(2)CF(3) or AgBPh(4) afforded the species [(HPNPRu)(2)(μ(2)-OSO(2)CF(3))(μ-Cl)(2)]OSO(2)CF(3) (9) and [(HPNPRu)(2)(μ-Cl)(3)]BPh(4) (10), respectively. Complex 3 reacted with HCl/H(2)O or HCl/Et(2)O to produce ammonia stoichiometrically; the complex catalytically disproportionates hydrazine to generate ammonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号