首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The EGFR plays an essential role in goblet cell hyperplasia and mucus hypersecretion. EGFR has an intrinsic tyrosine kinase activity that, when activated, induces the production of MUC5AC through the signaling kinase cascade in the airway epithelium. We have investigated the effects of an EGFR tyrosine kinase inhibitor, gefitinib, on ovalbumin (OVA)-induced, allergic inflammation in airway epithelia of mice. OVA-sensitized mice were pretreated with gefitinib at two different doses (12.5 and 50 mg/kg) and then challenged with OVA. The OVA challenge increased the total cell count and eosinophil count in bronchoalveolar lavage fluid (BALF), as well as the concentrations of T-helper2 (Th2) cytokines, such as IL-4 and IL-13, overall eosinophil recruitment in the lung tissue and airway hyperresponsiveness (AHR). Pretreatment with gefitinib reduced the inflammatory cell counts and released cytokine concentrations (IL-4 and IL-13) in BALF, as well as eosinophil recruitment in the lungs and AHR, in a dose-dependent manner. This was associated with decreased EGFR and Akt phosphorylation. We showed that gefinitib inhibits EGFR and phosphoinositol 3'-kinase (PI3K)/Akt activation which were activated in OVA sensitized mice. These findings suggest that inhibitors of the EGFR cascade may have a role in the treatment of asthma.  相似文献   

2.
Airway structural changes that occur in patients with asthma in response to persistent inflammation are termed airway remodeling. The cysteinyl leukotrienes (LTC(4), D(4) and E(4)) are known to play important roles in the pathobiology of asthma. To evaluate the effect of low dose montelukast (MK) on the development of airway remodeling using a chronic murine model of allergic airway inflammation with subepithelial fibrosis, BALB/c mice, after intraperitoneal ovalbumin (OVA) sensitization on days 0 and 14, received intranasal OVA periodically on days 14-75. MK treated mice received montelukast sodium intraperitoneally on days 26-75. The OVA sensitized/challenged mice developed an extensive eosinophil cell inflammatory response, goblet cell hyperplasia, mucus occlusion, and smooth muscle hypertrophy of the airways. In addition, in OVA sensitized/challenged mice, dense collagen deposition/fibrosis was seen throughout the lung interstitium surrounding the airways, blood vessels, and alveolar septae. The cysteinyl leukotriene 1 (CysLT1) receptor antagonist, MK significantly reduced the airway eosinophil infiltration, goblet cell hyperplasia, mucus occlusion, and lung fibrosis except airway smooth muscle hypertrophy in the OVA sensitized/challenged mice. The OVA sensitized/challenged mice had significantly increased epithelial desquamation compared with control mice. MK markedly reduced epithelial desquamation of airways in OVA/MK treated animals compared with OVA sensitized/challenged mice. MK treatment did not affect the levels of CysLT in lung tissue. Our results show that the important role of cysteinyl leukotrienes in the pathogenesis of asthma. Lower dose of CysLT1 receptor antagonism has a significant anti-inflammatory effect on allergen-induced lung inflammation and fibrosis but not airway smooth muscle hypertrophy in an animal model of asthma.  相似文献   

3.
Allergic inflammation is a response of the body against pathogens by cytokine release and leucocyte recruitment. Recently, there was an increase in morbimortality associated with allergic inflammation, especially asthma. The treatment has many adverse effects, requiring the search for new therapies. Monoterpenes are natural products with anti-inflammatory activity demonstrated in several studies and can be an option to inflammation management. Thus, we investigated the effects of citronellol, α-terpineol and carvacrol on allergic inflammation. The model of asthma was established by OVA induction in male Swiss mice. The monoterpenes were administered (25, 50 or 100 mg/kg, i.p.) 1 h before induction. After 24hs, the animals were sacrificed to leucocytes and TNF-α quantification. Monoterpenes significantly decrease leucocyte migration and TNF-α levels, possibly by modulation of COX, PGE2 and H1 receptor, as demonstrated by molecular docking. These findings indicate that alcoholic monoterpenes can be an alternative for treatment of allergic inflammation and asthma.  相似文献   

4.
5.
Callicarpalongissima has been used as a Yao folk medicine to treat arthritis for years in China, although its active anti-arthritic moieties have not been clarified so far. In this study, two natural phenolic diterpenoids with anti-rheumatoid arthritis (RA) effects, rosmanol and carnosol, isolated from the medicinal plant were reported on for the first time. In type II collagen-induced arthritis DBA/1 mice, both rosmanol (40 mg/kg/d) and carnosol (40 mg/kg/d) alone alleviated the RA symptoms, such as swelling, redness, and synovitis; decreased the arthritis index score; and downregulated the serum pro-inflammatory cytokine levels of interleukin 6 (IL-6), monocyte chemotactic protein 1 (MCP-1), and tumor necrosis factor α (TNF-α). Additionally, they blocked the activation of the Toll-like receptor 4 (TLR4)/nuclear factor κB (NF-κB)/c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) pathways. Of particular interest was that when they were used in combination (20 mg/kg/d each), the anti-RA effect and inhibitory activity on the TLR4/NF-κB/MAPK pathway were significantly enhanced. The results demonstrated that rosmanol and carnosol synergistically alleviated RA by inhibiting inflammation through regulating the TLR4/NF-κB/MAPK pathway, meaning they have the potential to be developed into novel, safe natural combinations for the treatment of RA.  相似文献   

6.
Chu X  Ci X  He J  Jiang L  Wei M  Cao Q  Guan M  Xie X  Deng X  He J 《Molecules (Basel, Switzerland)》2012,17(3):3586-3598
Rosmarinic acid (RA), a polyphenolic phytochemical, is a natural prolyl oligopeptidase inhibitor. In the present study, we found that RA exerted potent anti-inflammatory effects in in vivo models of acute lung injury (ALI) induced by lipopolysaccharide (LPS). Mice were pretreated with RA one hour before challenge with a dose of 0.5 mg/kg LPS. Twenty-four hours after LPS was given, bronchoalveolar lavage fluid (BALF) was obtained to measure pro-inflammatory mediator and total cell counts. RA significantly decreased the production of LPS-induced TNF-a, IL-6, and IL-1β compare with the LPS group. When pretreated with RA (5, 10, or 20 mg/kg) the lung wet-to-dry weight (W/D) ratio of the lung tissue and the number of total cells, neutrophils and macrophages in the BALF were decreased significantly. Furthermore, RA may enhance oxidase dimutase (SOD) activity during the inflammatory response to LPS-induced ALI. And we further demonstrated that RA exerts anti-inflammation effect in vivo models of ALI through suppresses ERK/MAPK signaling in a dose dependent manner. These studies have important implications for RA administration as a potential treatment for ALI.  相似文献   

7.
In immunological responses, controlling excessive T cell activity is critical for immunological homeostasis maintenance. Diketoacetonylphenalenone, derived from Hawaiian volcanic soil-associated fungus Penicillium herquei FT729, possesses moderate anti-inflammatory activity in RAW 264.7 cells but its immunosuppressive effect on T cell activation is unknown. In the present study, diketoacetonylphenalenone (up to 40 μM) did not show cytotoxicity in T cells. Western blot analysis showed treatment with diketoacetonylphenalenone did not alter the expression of anti-apoptotic proteins. Pretreatment with diketoacetonylphenalenone suppressed the interleukin-2 production in activated T cells induced by T cell receptor-mediated stimulation and PMA/A23187. The CFSE-proliferation assay revealed the inhibitory effect of diketoacetonylphenalenone on the proliferation of T cells. The expression of surface molecules on activated T cells was also reduced. We discovered the suppression of the TAK1-IKKα-NF-κB pathway by pretreatment with diketoacetonylphenalenone abrogated mitogen-activated protein kinase (MAPK) signaling in activated T cells. These results suggest that diketoacetonylphenalenone effectively downregulates T cell activity via the MAPK pathway and provides insight into the therapeutic potential of immunosuppressive reagents.  相似文献   

8.
9.
12(S)-Hydroxyheptadeca-5Z,8E,10E-trienoic acid (12- HHT) is an enzymatic product of prostaglandin H(2) (PGH(2)) derived from cyclooxygenase (COX)-mediated arachidonic acid metabolism. Despite the high level of 12-HHT present in tissues and bodily fluids, its precise function remains largely unknown. In this study, we found that 12-HHT treatment in HaCaT cells remarkably down-regulated the ultraviolet B (UVB) irradiation-induced synthesis of interleukin-6 (IL-6), a pro-inflammatory cytokine associated with cutaneous inflammation. In an approach to identify the down-stream signaling mechanism by which 12-HHT down-regulates UVB-induced IL-6 synthesis in keratinocytes, we observed that 12-HHT inhibits the UVB-stimulated activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB). In addition, we found that 12-HHT markedly up-regulates MAPK phosphatase-1 (MKP-1), a critical negative regulator of p38 MAPK. When MKP-1 was suppressed by siRNA knock-down, the 12-HHT-mediated inhibitory effects on the UVB-stimulated activation of p38 MAPK and NF-κB, as well as the production of IL-6, were attenuated in HaCaT cells. Taken together, our results suggest that 12-HHT exerts anti-inflammatory effect via up-regulation of MKP-1, which negatively regulates p38 MAPK and NF-κB, thus attenuating IL-6 production in UVB-irradiated HaCaT cells. Considering the critical role of IL-6 in cutaneous inflammation, our findings provide the basis for the application of 12-HHT as a potential anti-inflammatory therapeutic agent in UV-induced skin diseases.  相似文献   

10.
11.
Persistent inflammatory reactions promote mucosal damage and cause dysfunction, such as pain, swelling, seizures, and fever. Therefore, in this study, in order to explore the anti-inflammatory effect of 6-methylcoumarin (6-MC) and suggest its availability, macrophages were stimulated with lipopolysaccharide (LPS) to conduct an in vitro experiment. The effects of 6-MC on the production and levels of pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α) and inflammatory mediators (nitric oxide (NO), prostaglandin E2 (PGE2)) in LPS-stimulated RAW 264.7 cells were examined. The results showed that 6-MC reduced the levels of NO and PGE2 without being cytotoxic. In addition, it was demonstrated that the increase in the expression of pro-inflammatory cytokines caused by LPS stimulation, was decreased in a concentration-dependent manner with 6-MC treatment. Moreover, Western blot results showed that the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which increased with LPS treatment, were decreased by 6-MC treatment. Mechanistic studies revealed that 6-MC reduced the phosphorylation of the mitogen-activated protein kinase (MAPK) family and IκBα in the MAPK and nuclear factor-kappa B (NF-κB) pathways, respectively. These results suggest that 6-MC is a potential therapeutic agent for inflammatory diseases that inhibits inflammation via the MAPK and NF-κB pathways.  相似文献   

12.
To determine the impact of IL-23 knockdown by RNA interference on the development and severity of ovalbumin (OVA)-induced asthmatic inflammation, and the potential mechanisms in mice, the IL-23-specific RNAi-expressing pSRZsi-IL-23p19 plasmid was constructed and inhaled into OVA-sensitized mice before each challenge, as compared with that of control mice treated with alum or budesonide. Inhalation of the pSRZsi-IL-23p19, significantly reduced the levels of OVA-challenge induced IL-23 in the lung tissues by nearly 75%, determined by RT-PCR. In addition, knockdown of IL-23 expression dramatically reduced the numbers of eosinophils and neutrophils in BALF and mitigated inflammation in the lungs of asthmatic mice. Furthermore, knockdown of IL-23 expression significantly decreased the levels of serum IgE, IL-23, IL-17, and IL-4, but not IFNgamma, and its anti-inflammatory effects were similar to or better than that of treatment with budesonide in asthmatic mice. Our data support the notion that IL-23 and associated Th17 responses contribute to the pathogenic process of bronchial asthma. Knockdown of IL-23 by RNAi effectively inhibits asthmatic inflammation, which is associated with mitigating the production of IL-17 and IL-4 in asthmatic mice.  相似文献   

13.
为研究紫斑罂粟壳挥发油镇咳化痰平喘的活性成分及作用机制,采用气相色谱-质谱(GC-MS)联用法分析罂粟壳挥发油成分,并结合Pubchem和Swiss Target Prediction数据库筛选活性成分靶点. 其中,在GeneCards数据库中检索镇咳、祛痰、平喘相关的靶点,利用在线Venn取交集基因,Cytoscap 3.7.1软件构建成分-靶点-疾病网络图筛选关键成分,String数据库构建蛋白互作网络筛选核心作用靶点,DAVID数据库进行GO功能和KEGG通路富集分析. 结果表明,GC-MS鉴别出紫斑罂粟壳挥发油中28个化学成分,虚拟筛选获得20个活性成分对应的259个靶点. 网络药理学预测紫斑罂粟壳挥发油通过肿瘤坏死因子(TNF)、磷酸化蛋白激酶(AKT1)、SRC蛋白激酶(SRC)、表皮生长因子受体(EGFR)和丝裂原活化蛋白激酶 1(MAPK1)等关键靶点,进而协同调控肿瘤通路,神经配体-受体相互作用、PI3K-Akt信号通路等多条信号通路发挥镇咳祛痰、平喘的治疗作用. 研究为后续试验研究罂粟壳挥发油的药效物质及作用机制提供参考.  相似文献   

14.
Ginkgolide B is a dietary diterpene with multiple pharmacological activities. However, current research on ginkgolide B is not comprehensive. The current study analyzed the metabolic profile of ginkgolide B in vivo and in vitro using ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. To detect and identify the different metabolites in ginkgolide B, a novel data processing method was used as an assistant tool. A total of 53 different metabolites of ginkgolide B (38 phase I metabolites and 15 phase II metabolites) were detected relative to blank samples. The biotransformation route of ginkgolide B was identified as oxidation, dehydroxylation, hydrogenation, decarbonylation, demethylation, sulfate conjugation, glucose conjugation, methylation, and acetylation. The current study demonstrated a method for rapidly detecting and identifying metabolites and provided useful information to further characterize the pharmacology and mechanism of ginkgolide B. A method for the analysis of other diterpene metabolic components in vivo and in vitro was also established.  相似文献   

15.
Asthma is characterized by airway inflammation induced by immune dysfunction to inhaled antigens. Although respiratory viral infections are the most common cause of asthma exacerbation, immunologic mechanisms underlying virus-associated asthma exacerbation are controversial. Clinical evidence indicates that nitric oxide (NO) levels in exhaled air are increased in exacerbated asthma patients compared to stable patients. Here, we evaluated the immunologic mechanisms and the role of NO synthases (NOSs) in the development of virus-associated asthma exacerbation. A murine model of virus-associated asthma exacerbation was established using intranasal challenge with ovalbumin (OVA) plus dsRNA for 4 weeks in mice sensitized with OVA plus dsRNA. Lung infiltration of inflammatory cells, especially neutrophils, was increased by repeated challenge with OVA plus dsRNA, as compared to OVA alone. The neutrophilic inflammation enhanced by dsRNA was partly abolished in the absence of IFN-gamma or IL-17 gene expression, whereas unaffected in the absence of IL-13. In terms of the roles of NOSs, dsRNA-enhanced neutrophilic inflammation was significantly decreased in inducible NOS (iNOS)-deficient mice compared to wild type controls; in addition, this phenotype was inhibited by treatment with a non-specific NOS inhibitor (L-NAME) or an specific inhibitor (1400 W), but not with a specific endothelial NOS inhibitor (AP-CAV peptide). Taken together, these findings suggest that iNOS pathway is important in the development of virus-associated exacerbation of neutrophilic inflammation, which is dependent on both Th1 and Th17 cell responses.  相似文献   

16.
T-helper (Th)17 cell responses are important for the development of neutrophilic inflammatory disease. Recently, we found that acetyl salicylic acid (ASA) inhibited Th17 airway inflammation in an asthma mouse model induced by sensitization with lipopolysaccharide (LPS)-containing allergens. To investigate the mechanism(s) of the inhibitory effect of ASA on the development of Th17 airway inflammation, a neutrophilic asthma mouse model was generated by intranasal sensitization with LPS plus ovalbumin (OVA) and then challenged with OVA alone. Immunologic parameters and airway inflammation were evaluated 6 and 48 h after the last OVA challenge. ASA inhibited the production of interleukin (IL)-17 from lung T cells as well as in vitro Th17 polarization induced by IL-6. Additionally, ASA, but not salicylic acid, suppressed Th17 airway inflammation, which was associated with decreased expression of acetyl-STAT3 (downstream signaling of IL-6) in the lung. Moreover, the production of IL-6 from inflammatory cells, induced by IL-17, was abolished by treatment with ASA, whereas that induced by LPS was not. Altogether, ASA, likely via its acetyl moiety, inhibits Th17 airway inflammation by blockade of IL-6 and IL-17 positive feedback.  相似文献   

17.
The present investigation aimed to evaluate the activity of the essential oil of Mentha arvensis L. on exogenously induced bronchoconstriction in experimental animals. The anti-asthmatic effect of M. arvensis essential oil (MAEO) was studied using histamine aerosol-induced bronchoconstriction in guinea pigs and ovalbumin (OVA) sensitised albino mice. Treatment with M. arvensis oil significantly (p < 0.001) increased the time of preconvulsive dyspnoea in histamine-induced guinea pigs. Oral treatment of MAEO significantly (p < 0.001) decreased absolute eosinophil count, serum level of IgE and the number of eosinophils, neutrophils in BALF. Histopathological examination of lungs showed that essential oil rescinded bronchial asthma. The present investigation provides evidence that MAEO relaxes bronchial smooth muscles and suppressed immunological response to OVA.  相似文献   

18.
Excessive exposure of solar ultraviolet (UV) radiation, particularly its UV-B component, to humans causes many adverse effects that include erythema, hyperplasia, hyperpigmentation, immunosuppression, photoaging and skin cancer. In recent years, there is increasing use of botanical agents in skin care products. Pomegranate derived from the tree Punica granatum contains anthocyanins (such as delphinidin, cyanidin and pelargonidin) and hydrolyzable tannins (such as punicalin, pedunculagin, punicalagin, gallagic and ellagic acid esters of glucose) and possesses strong antioxidant and anti-inflammatory properties. Recently, we have shown that pomegranate fruit extract (PFE) possesses antitumor promoting effects in a mouse model of chemical carcinogenesis. To begin to establish the effect of PFE for humans in this study, we determined its effect on UV-B-induced adverse effects in normal human epidermal keratinocytes (NHEK). We first assessed the effect of PFE on UV-B-mediated phosphorylation of mitogen-activated protein kinases (MAPK) pathway in NHEK. Immunoblot analysis demonstrated that the treatment of NHEK with PFE (10-40 microg/mL) for 24 h before UV-B (40 mJ/cm(2)) exposure dose dependently inhibited UV-B-mediated phosphorylation of ERKl/2, JNK1/2 and p38 protein. We also observed that PFE (20 microg/mL) inhibited UV-B-mediated phosphorylation of MAPK in a time-dependent manner. Furthermore, in dose- and time-dependent studies, we evaluated the effect of PFE on UV-B-mediated activation of nuclear factor kappa B (NF-kappaB) pathway. Using Western blot analysis, we found that PFE treatment of NHEK resulted in a dose- and time-dependent inhibition of UV-B-mediated degradation and phosphorylation of IkappaBalpha and activation of IKKalpha. Using immunoblot analysis, enzyme-linked immunosorbent assay and electrophoretic mobility shift assay, we found that PFE treatment to NHEK resulted in a dose- and time-dependent inhibition of UV-B-mediated nuclear translocation and phosphorylation of NF-kappaB/p65 at Ser(536). Taken together, our data shows that PFE protects against the adverse effects of UV-B radiation by inhibiting UV-B-induced modulations of NF-kappaB and MAPK pathways and provides a molecular basis for the photochemopreventive effects of PFE.  相似文献   

19.
Bidens pilosa L. (Asteraceae) has been used historically in traditional Asian medicine and is known to have a variety of biological effects. However, the specific active compounds responsible for the individual pharmacological effects of Bidens pilosa L. (B. pilosa) extract have not yet been made clear. This study aimed to investigate the anti-inflammatory phytochemicals obtained from B. pilosa. We isolated a flavonoids-type phytochemical, isookanin, from B. pilosa through bioassay-guided fractionation based on its capacity to inhibit inflammation. Some of isookanin’s biological properties have been reported; however, the anti-inflammatory mechanism of isookanin has not yet been studied. In the present study, we evaluated the anti-inflammatory activities of isookanin using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We have shown that isookanin reduces the production of proinflammatory mediators (nitric oxide, prostaglandin E2) by inhibiting the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated macrophages. Isookanin also inhibited the expression of activator protein 1 (AP-1) and downregulated the LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-jun NH2-terminal kinase (JNK) in the MAPK signaling pathway. Additionally, isookanin inhibited proinflammatory cytokines (tumor necrosis factor-a (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β)) in LPS-induced THP-1 cells. These results demonstrate that isookanin could be a potential therapeutic candidate for inflammatory disease.  相似文献   

20.
Epidermal keratinocyte differentiation is a tightly regulated stepwise process that requires protein kinase C (PKC) activation. Studies on cultured mouse keraitnocytes induced to differentiate with Ca2+ have indirectly implicated the involvement of PKCa isoform. When PKCalpha was overexpressed in undifferentiated keratinocytes using adenoviral system, expressions of differentiation markers such as loricrin, filaggrin, keratin 1 (MK1) and keratin 10 (MK10) were increased, and ERK1/2 phosphorylation was concurrently induced without change of other MAPK such as p38 MAPK and JNK1/2. Similarly, transfection of PKCalpha kinase active mutant (PKCalpha- CAT) in the undifferentiated keratinocyte, but not PKCbeta-CAT, also increased differentiation marker expressions. On the other hand, PKCalpha dominant negative mutant (PKCbeta-KR) reduced Ca2+ -mediated differentiation marker expressions, while PKCbeta-KR did not, suggesting that PKCalpha is responsible for keratinocyte differentiation. When downstream pathway of PKCalpha in Ca2+ -mediated differentiation was examined, ERK1/2, p38 MAPK and JNK1/2 phosphorylations were increased by Ca2+ shift. Treatment of keratinocytes with PD98059, MEK inhibitor, and SB20358, p38 MAPK inhibitor, before Ca2+ shift induced morphological changes and reduced expressions of differentiation markers, but treatment with SP60012, JNK1/2 inhibitor, did not change at all. Dominant negative mutants of ERK1/2 and p38 MAPK also inhibited the expressions of differentiation marker expressions in Ca2+ shifted cells. The above results indicate that both ERK1/2 and p38 MAPK may be involved in Ca2+ -mediated differentiation, and that only ERK1/2 pathway is specific for PKCalpha-mediated differentiation in mouse keratinocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号