首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Five novel bridged heptaphenyl polyhedral oligomeric silsesquioxanes (POSSs), in which two identical silicon cages R7(SiO1.5)8 (with R = Phenyl) are linked to various aliphatic [(CH2) n with n = 2, 6 and 10] and aromatic (Ar–Ar and Ar–O–Ar, where Ar = p-C6H4) bridges, were synthesized. The obtained compounds were characterized by elemental analysis and 1 H NMR spectroscopy, and the results were in very good agreement with those of expected products. The synthesized heptaphenyl POSSs were thermally degraded, in dynamic heating conditions (25–700 °C), in both flowing nitrogen and static air atmosphere. The temperatures at 5% mass loss (T 5%) and residues at 700 °C were thus determined to evaluate their resistance to thermal degradation, but no substantial difference was found between the values in the two studied environments. The obtained T 5% values were much higher than those of the corresponding isobutyl and cyclopentyl POSSs we investigated in the past. Also, the T 5% values of the phenyl POSSs with aliphatic bridges decreased quite linearly on increasing the number of bridge carbon atoms (n C). This behaviour was interpreted and attributed to the presence of the external corona formed by voluminous phenyl groups. The residue at 700 °C, which was largely higher than those of the corresponding isobutyl and cyclopentyl POSSs, was a further confirmation of the better thermal stability of the compounds here studied.  相似文献   

2.
The relationships between the sintering temperatures and the microwave dielectric properties of (1−x)Mg4Nb2O9-xB2O3 (x = 0.5–10 wt. %) compounds were investigated by the sol–gel method in order to reduce the sintering temperature in this study. A suitable amount of B2O3 doping was effective in allowing low sintering temperatures without a little detrimental effect on these dielectric properties of the Mg4Nb2O9 compounds. The variations in the dielectric constant (ε r ) and the quality factor (Q·f) of the Mg4Nb2O9 compounds depended on the amount of B2O3 doping and the sintering temperature. As a result, a ε r value of ~12.8 and a Q·f value of ~142,570 GHz were obtained when the Mg4Nb2O9 compound with x = 3% was sintered at 1,200 °C for 4 h. The temperature coefficient of resonant frequency (τ f ) of the 3%-B2O3 doping Mg4Nb2O9 compound slightly changed from −33 to −48 ppm/°C with an increased sintering temperature.  相似文献   

3.
Nb-doped BaWO4 with the assumed formula BaW1?xNbxO4?δ (x = 0, 0.005, 0.01, 0.02 and 0.05) were prepared by solid-state reaction method. Crystal structure and phase composition were determined by X-ray diffraction method. Scanning electron microscopy (SEM) coupled with energy-dispersive spectrometry (EDS) was used to describe microstructure and chemical composition of synthesised materials. It was found that solubility limit of niobium in the BaWO4 structure is the range 0.5–1 mol%, as formation of second phase—Ba5Nb4O15—was observed for samples with higher dopant content. For evaluation of the chemical stability of synthesized materials, the comparative CO2/H2O exposure test was performed. Samples were exposed to carbon dioxide- and water vapour-rich atmosphere (7% CO2 in air, 100% RH) at 298 K for 700 h. During this exposition, the chemical reactions between the samples and the surrounding gaseous atmosphere resulting in formation of barium hydroxide and/or barium carbonate can process. Thermogravimetry (TG) method was used for chemical stability evaluation. The comparison of samples before and after the CO2/H2O exposure test was performed. To support the interpretation of TG results, the analysis of gaseous products evolved during thermal treatment of the samples was done using mass spectrometer. The effect of dopant on the BaWO4 chemical stability improvement was observed. In order to determine the electrical properties of obtained materials, the DC resistance measurements in synthetic air atmosphere were taken. It was shown that niobium doping and the presence of second phase—Ba5Nb4O15—leads to an increase in the total conductivity of synthesised materials.  相似文献   

4.
Phase equilibria were studied in the Nb2O5–CdO system in the Nb2O5-rich region including CdNb2O6 and Cd2Nb2O7. It was determined that CdNb2O6 and Cd2Nb2O7 in air are stable to 1150 and 1120°C, respectively, and that, above these temperatures, there is solid-phase decomposition of niobates with CdO release in the gas phase. Along with the cadmium oxide evaporation, the Cd2Nb2O7 decomposition is accompanied by the formation of cadmium metaniobate CdNb2O6 and the CdNb2O6 decomposition results in the formation of niobium oxide Nb2O5. No thermal events were observed in the differential thermal analysis curve for a 1: 1 CdNb2O6–Cd2Nb2O7 mixture heated to 1100°C in air, which suggests that there are neither phase transformations in cadmium niobates, nor a eutectic within this temperature and concentration ranges. A study of the morphology of compacted samples of niobates determined specific conditions for producing dense composite ceramics, a mixture of niobates, that is suitable for using as a dielectric material.  相似文献   

5.
(BiFeO3)1−x –(BaTiO3) x solid solution thin films are grown on Pt/Ti/SiO2/Si substrates by chemical solution deposition method. Films with x = 0.00, 0.05 and 0.10 were prepared by annealing at 500°C. X-ray diffraction patterns indicate that the pure BiFeO3 film adopts random orientation while the solid solution films are highly (100) preferentially oriented. Improved electric property at room temperature was observed in the BaTiO3 incorporated BiFeO3 films. The remanent polarization of the film with x = 0.0, 0.05 and 0.10 are 76.6, 51.9 and 19.7 μC/cm2 respectively under a measuring electric field of 0.94 MV/cm. The BaTiO3 incorporated BiFeO3 films show improved fatigue endurance. By the solid solution with BaTiO3, the leakage current density is reduced effectively.  相似文献   

6.
The system LaPO4–SiO2–NaF–Nb2O5–Fe2O3 is characterized by immiscibility fields in the liquid state region. Addition of iron expands fields of immiscibility of melts and decreases the temperature of their coexistence. A fraction of 87–90% of niobium is extracted into iron silicate melt, and 92–98% of lanthanum is extracted into phosphate salt melt.  相似文献   

7.
8.
Thermal behavior of xGa2O3–(50 − x)PbO–50P2O5 (x = 0, 10, 20, and 30 mol.% Ga2O3) and xGa2O3–(70 − x)PbO–30P2O5 (x = 0, 10, 20, 30, and 40 mol.% Ga2O3) glassy materials were studied by thermo-mechanical analysis (TMA) and differential thermal analysis (DTA). Replacement of PbO for Ga2O3 is accompanied by increasing glass-transition temperature (263 ≤ T g/°C ≤ 535), deformation temperature (363 ≤ T d/°C ≤ 672), crystallization temperature (396 ≤ T c/°C ≤ 640) and decreasing of coefficient of thermal expansion (5.1 ≤ CTE/ppm K−1 ≤ 16.7). Values of Hruby parameter were determined (0.1 ≤ K H ≤ 1.3). The thermal stability of prepared glasses increases with increasing of concentration of Ga2O3.  相似文献   

9.
Hexagonal Ba5Ta4O15 were synthesized by a sol–gel process at temperatures of 700–900 °C. The microstructure properties and morphology are studied by X-ray diffraction and scanning electron microscope. Traces of the Ba5Ta4O15 component were detected by energy dispersive X-ray analysis. A higher temperature enhanced higher atom mobility and caused the growth direction to change and created hexagonal square makes obvious good quality of samples. The visible light absorption edges of the Ba5Ta4O15 nanorods and were corresponded to band-gap energies of 4.0 eV.  相似文献   

10.
The compositionally graded Ba1−xCaxZr0.05Ti0.95O3 (x = 0, 0.05, 0.10) (BCZT) thin films with compositional gradient from BaZr0.05Ti0.95O3 to Ba0.90Ca0.10Zr0.05Ti0.95O3 were deposited on Pt/Ti/SiO2/Si substrates by sol-gel processing. The crystal structure of the thin films was determined by X-ray diffraction. Field emission scanning electron microscopy (FESEM) was used to examine crystallite size and morphology of compositionally graded thin films. The dielectric properties of compositionally graded thin films were characterized by measuring the dielectric constant and dielectric loss as a function of temperature, applied electric field and frequency. As a result, compositionally graded thin films with weak temperature dependence were realized. Dielectric constant peaks, common to a ferroelectric transition, were not observed in the temperature range from 298 to 413 K. The compositionally graded BCZT thin films with weak temperature dependence of tunability could be attractive materials for frequency and phase agile tunable microwave components such as tunable filters, tunable oscillators, and phase shifters for application in phased array antennas.  相似文献   

11.
The textural and structural properties of mixed oxides Ga2O3–Al2O3, obtained via impregnating γ-Al2O3 with a solution of Ga(NO3)3 and subsequent heat treatment, are studied. According to the results from X-ray powder diffraction, gallium ions are incorporated into the structure of aluminum oxide to form a solid solution of spinel-type γ-Ga2O3–Al2O3 up to a Ga2O3 content of 50 wt % of the total weight of the sample, accompanied by a reduction in the specific surface area, volume, and average pore diameter. It is concluded that when the Ga2O3 content exceeds 50 wt %, the β-Ga2O3 phase is observed along with γ-Ga2O3–Al2O3 solid solution. 71Ga and 27Al NMR spectroscopy shows that gallium replaces aluminum atoms from the tetrahedral position to the octahedral coordination in the structure of γ-Ga2O3–Al2O3.  相似文献   

12.
Sodium aluminophosphate samples with composition 43.8Na2O12.5Al2O343.8P2O5 were prepared by the sol–gel route using different precursors and working in different pH ranges from pH < 1 up to pH > 10. The structures of the gels and of the corresponding glasses were investigated by solid state NMR and compared to that of a glass with the same composition prepared by a traditional melting process. In addition to bulk materials, thin films were deposited by dip coating on silica glasses. Applying secondary neutral mass spectrometry (SNMS), the expected elements and residual carbon were identified. The surfaces of the coatings and fracture surfaces of bulk material were investigated using atomic force microscopy (AFM). Solid state NMR revealed that samples prepared via a lactate route exhibited local Al and P environments closest to that of the melt-prepared glass, with the highest extent of Al-O-P connectivity.  相似文献   

13.
In this work, the structure and thermal properties of aluminosilicate fritted glazes in SiO2–Al2O3–CaO–MgO–Na2O–K2O–ZnO system with (4.0 mol%) and without addition of ZnO were examined by GIXRD, FTIR, MAS-NMR and thermal methods (DTA, DIL). It has been found that the all experimental glazes are amorphous material (transparent glazes). On the base of spectroscopic investigations, it was found that zinc ions exist in the network glazes in the octahedral coordination—Zn2+ ions play a network modifier role in structure of glazes. An analysis of the data obtained from thermal tests showed that addition of ZnO into chemical composition results in decrease in glass transition temperature value (T g) for all glazes (DTA, DIL). The coefficient of thermal expansion (α) is decreased as the whole measurement range for one series of fritted glazes.  相似文献   

14.
A glass with the composition of the SiO2–Na2O–CaO–P2O5 was synthesized by sol–gel method at temperature of 900 °C, and then yttrium-, silver- and cerium-containing glasses were prepared at the same conditions using this base system. The structural and thermal properties of the glass samples were investigated by X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy, energy-dispersive X-ray (EDX) spectroscopy and differential thermal analysis techniques. The Ca5(PO4)2(SiO4)6 phase having the orthorhombic crystal system is detected for each sample without any secondary phase, and this phase is confirmed by the FTIR spectra. With the addition of Y, Ag and Ce to the SiO2–Na2O–CaO–P2O5 system, the variations in the average crystallite size, crystallinity percent, lattice parameters and unit cell volume are observed. A decrease in the crystallization peak temperature and the changes in the glass transition temperature are seen with the addition of Y, Ag and Ce to the base system. The addition of Y, Ag and Ce to the base glass increases significantly its density. The EDX spectra of the as-prepared samples verify the introduction of the as-mentioned elements.  相似文献   

15.
Radiation-induced degradation of the weakly and strongly 4-vinylpyridine basic ion exchange resins by gamma radiolysis was investigated in the presence of air and liquid water. This study is focused on evaluating the radiolytic gases (H2, CO, CO2 and CH4) and liquid products (water-solute TOC and NH4 +). The weakly basic resin yielded lower amounts of H2 and CO and higher amounts of CO2 than those of the strongly basic resin. Moreover, the strong basic resin tended to yield greater amounts of NH4 +. Resins were characterized by the FTIR spectroscopy technique and the results showed that the resins structures are relatively stable.  相似文献   

16.
One-dimensional (1D) submicron-belts of V2O5 have been prepared by a sol–gel route using V2O5, H2O2 and aniline as starting materials. Thermogravimetric and differential thermal analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy were employed to characterize the samples. Electrochemical behaviors as cathode material in rechargeable lithium-ion batteries were investigated by galvanostatic charge–discharge measurement and cyclic voltammeter. The results showed that the synthesized V2O5 appeared to be submicron-belts and orthorhombic structure. The V2O5 submicron-belts exhibited a high initial discharge capacity of 346 mAh/g and stayed 240 mAh/g after 20 cycles at 0.1 C discharge rate in the potential region 1.8–4.0 V.  相似文献   

17.
It was determined that the system LaPO4–SiO2–NaF–Nb2O5 within the temperature range 850–1200°C has regions of immiscibility of liquid phases (silicate and phosphate–salt melts). The coexisting melts have contrast chemical and phase compositions and structural-textural features, because of which the methods for extracting rare-earth elements and niobium from these melts differ. The silicate melts form glass, whereas the phosphate–salt melts have high crystallization ability. The mutual solubility of the liquid phases does not exceed 5%. The components of the system are contrastively distributed between the silicate and phosphate–salt melts. A fraction of 95–97% of niobium is extracted into the silicate melt, and 93–95% of La and P is extracted into the phosphate–salt melt.  相似文献   

18.
The effect of TeO2 additions on the thermal behaviour of zinc borophosphate glasses were studied in the compositional series (100 − x)[0.5ZnO–0.1B2O3–0.4P2O5]–xTeO2 by differential scanning calorimetry, thermodilatometry and heating microscopy thermal analysis. The addition of TeO2 to the starting borophosphate glass resulted in a linear increase of glass transition temperature and dilatometric softening temperature, whereas the thermal expansion coefficient decreased. Most of glasses crystallize under heating within the temperature range of 440–640 °C. The crystallization temperature steeply decreases with increasing TeO2 content. The lowest tendency towards crystallization was observed for the glasses containing 50 and 60 mol% TeO2. X-ray diffraction analysis showed that major compounds formed by annealing of the glasses were Zn2P2O7, BPO4 and α-TeO2. Annealing of the powdered 50ZnO–10B2O3–40P2O5 glass leads at first to the formation of an unknown crystalline phase, which is gradually transformed to Zn2P2O7 and BPO4 during subsequent heating.  相似文献   

19.
Single crystals of the Na4[Na2Cr2(C2O4)6] · 10H2O complex were synthesized for the first time. The structure of the complex was determined by X-ray diffraction analysis. The compound crystallizes in the monoclinic crystal system with the unit cell parameters a = 17.290(4) Å, b = 12.521(3) Å, c = 15.149(3) Å, β = 100.45(3)°, Z = 4, space group Cc. Anionic layers [NaCr(C2O4)3] 2n 4n? can be distinguished in the crystal structure of the complex. The Na+ cations and water molecules, involved in the formation of a hydrogen bond network, are located between the anionic layers.  相似文献   

20.
Results are reported of a study of the structural and electrical characteristics of substituted bismuth niobates with composition Bi3Nb1–x Er x O7–δ, which are promising oxygen-ion conductors. The homogeneity regions of solid solutions were determined by X-ray phase analysis and electron microscopy with X-ray fluorescence microanalysis, and their crystal-chemical parameters were calculated. The electrical conductivity of sintered samples was examined by impedance spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号