首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
为了对柱形装药水下爆炸高压气泡膨胀过程进行三维数值模拟,用level set方法追踪气水界面,详细描述了精确对柱形气泡进行level set建模;对于流场,使用Euler方程描述,并用高精度格式(五阶WENO和四阶R-K法)离散空间项和时间项;对于level set方程,使用五阶HJ-WENO离散;用RGFM处理气水界面附近网格节点。给出了水下流场不同时刻的压力云图、柱形高压气泡的形状演变以及流场中几个指定点的压力峰值。通过三维建模和计算验证,用RGFM结合高精度格式可以很好地对柱形高压气泡膨胀问题进行三维数值模拟,同时也可以较精确地追踪高密度比、高压力比的三维气水界面。计算结果表明,柱形高压气泡在膨胀过程中,形状逐渐向椭球形变化;位于固壁附近的柱形高压气泡受固壁反射波的影响,在固壁法线方向上的膨胀会受到抑制;双圆柱形高压气泡膨胀产生的冲击波,可以彼此抑制对方的膨胀。  相似文献   

2.
气泡在运动过程中的动力学特性与流场的压力分布密切相关。本文用界面跟踪法(Front-Tracking Method,FTM)对气泡界面及其形状进行数值计算,模拟了粘性流体中单气泡上升的界面形态,并与文献中的实验结果进行对比。结果表明,在同一数量级上的厄特沃什数OE、莫顿数OM形状变化规律基本一致,计算模型的正确性得到验证。对同轴两气泡上升过程进行计算,与VOF的模拟结果进行对比,FTM方法得出的气泡形态变化相同,界面更加清晰;进一步研究同轴两个气泡上升动力学特性,使用清晰的界面位置对应压力场进行分析,从压力的角度分析了其变形、速度变化。结果表明:上下两个气泡都有一个压力中心区域使得气泡运动速度大幅度变化,气泡因界面所处区域的压力梯度分布不均呈现出由球形-子弹状-椭圆形的形态变化;随着时间推移,两个相互作用的气泡间的相互作用力在减弱,逐渐融合。  相似文献   

3.
基于势流理论建立水下爆炸气泡运动三维模型,采用边界积分法求解拉普拉斯方程,得到气泡的变形及位置,并在计算过程中引入弹性网格技术,避免了因网格扭曲而导致的数值发散,进而模拟了刚性壁面附近三维气泡的动态特性。在数值模拟过程中,将本文计算值与实验数据进行对比分析,结果表明,计算值与实验数据吻合良好。在此基础上,分别模拟了弱浮力、强Bjerknes力,强浮力、弱Bjerknes力以及浮力与Bjerknes力相当时壁面附近气泡的运动特征,并将各种工况的计算结果与基于开尔文冲量理论(Kelvin Impulse)的Blake准则进行对比分析与讨论,得到了不同参数下气泡的运动特征。  相似文献   

4.
利用电场控制气泡形态及运动,强化气液相间传热传质是电流体动力学的重要研究内容之一. 然而目前多数研究集中在非电场下的气泡动力学上,对于电场下的气泡行为特性及电场的作用机制仍需开展深入研究. 本研究对电场作用下单个气泡在流体中上升过程的动力学行为进行了数值模拟研究. 在建立二维模型的基础上求解电场方程与Navier-Stokes方程,并采用水平集方法捕捉了上升气泡的位置及形状. 模拟结果的准确性与有效性通过与前人实验和数值结果进行对比得到了验证. 通过改变雷诺数、邦德数和电邦德数等不同参数研究了电场下液体黏度、表面张力和电场力对气泡运动变形的影响. 计算结果表明,电场对气泡的动态特性有显著影响. 非电场情况下液体黏度和表面张力较大时气泡基本维持球状,反之气泡发生变形并逐步达到稳定状态. 此外,电场作用使气泡在初始上升阶段发生剧烈形变,随着不断上升,气泡形变程度不断减小,且气泡的上升速度和长径比均出现振荡. 垂直电场使气泡的上升速度有较大的提高,且随着电邦德数的增大,难以达到相对稳定的状态.   相似文献   

5.
利用电场控制气泡形态及运动,强化气液相间传热传质是电流体动力学的重要研究内容之一.然而目前多数研究集中在非电场下的气泡动力学上,对于电场下的气泡行为特性及电场的作用机制仍需开展深入研究.本研究对电场作用下单个气泡在流体中上升过程的动力学行为进行了数值模拟研究.在建立二维模型的基础上求解电场方程与Navier-Stokes方程,并采用水平集方法捕捉了上升气泡的位置及形状.模拟结果的准确性与有效性通过与前人实验和数值结果进行对比得到了验证.通过改变雷诺数、邦德数和电邦德数等不同参数研究了电场下液体黏度、表面张力和电场力对气泡运动变形的影响.计算结果表明,电场对气泡的动态特性有显著影响.非电场情况下液体黏度和表面张力较大时气泡基本维持球状,反之气泡发生变形并逐步达到稳定状态.此外,电场作用使气泡在初始上升阶段发生剧烈形变,随着不断上升,气泡形变程度不断减小,且气泡的上升速度和长径比均出现振荡.垂直电场使气泡的上升速度有较大的提高,且随着电邦德数的增大,难以达到相对稳定的状态.  相似文献   

6.
把界面捕捉等效方程、Level-Set方程和欧拉方程组耦合,在Stiffened状态方程下,采用高分辨率NND格式求解流体力学方程组并用Level-Set函数捕捉界面的位置。对二维情况下激波和气泡相互作用的问题进行数值模拟,并与波传算法的模拟结果进行比较。计算结果表明该方法能有效的抑制间断附近的非物理振荡,有很强的捕捉界面的能力。  相似文献   

7.
为研究两相界面迁移特性,基于LevelSet方法,建立了求解非定常不可压缩两相界面流动的数值方法。计算中使用结构化网格采用LevelSet函数捕捉两相界面。通过对经典算例的模拟,验证了数值方法对界面捕捉的有效性和精确性。模拟了油滴在水中上升、变形,与油层融合的过程,研究了气泡在产生、发展、脱离阶段的变形机理,和表面张力系数对气泡形状的影响。计算结果发现,表面张力系数越大,气泡在发展阶段持续的时间就越长,膨胀的程度也越大,并在脱离时刻,气泡的体积也越大,为进一步研究两相界面迁移特性提供了新的途径。  相似文献   

8.
气泡在液体中运动过程的数值模拟   总被引:7,自引:1,他引:7  
本文用数值方法预测气泡在液体中的百定常运动。运用位标函数进行界面的隐含跟踪并且与有限体积法相结合构成一种可行的计算方法。本文方法允许在界面处存在很大的物性差,而且较容易将表面张力引入控制方程。我们对气液两相流中单个气泡的运动进行了计算,得到了与实验结果符合很好的数值结果。  相似文献   

9.
针对下游带有障碍物的溃坝流动问题,本文基于两相流动模型,在有限元算法框架下对其进行数值模拟研究。依据水平集(Level Set)方法追踪运动界面,并引入了一个简单的修正技术,保证较好的质量守恒性。为了精确表示运动界面,采用稳定和有效的间断有限元方法求解双曲型Level Set及其重新初始化方程。对于两相统一Navier-Stokes方程,首先利用分裂格式对其解耦,然后通过SUPG(Streamline Upwind Petrov Galerkin)方法进行数值求解。模拟研究了下游带有障碍物的牛顿流体溃坝流动问题,得到的数值结果与文献已有模拟结果及实验结果均吻合较好。此外,还考虑了幂律型非牛顿流体,并分析了不同特性非牛顿流体对于溃坝流动过程和界面形态等的影响。  相似文献   

10.
在适当深度的无黏、无旋的流体中对水下爆炸气泡运动特性进行理论研究。综合运用势流理论、能量方程以及拉格朗日方程建立气泡在不可压缩流体中的运动方程。并以此为基础,考虑重力、浮力以及阻力等多种因素对气泡运动特性的影响,通过引入新的边界积分方程,结合分析力学中完整非保守系统的Hamilton原理建立气泡在可压缩流体中的运动微分方程,并对微分方程进行求解。将方程的数值解与MSC.DYTRAN非线性有限元软件的计算结果以及经验公式进行对比,方程数值解与二者都具有较好的一致性。结果表明,基于非保守系统可压缩流体建立的气泡运动方程正确、可行,相关的理论研究和计算具有一定参考价值。  相似文献   

11.
In this article, the flow instabilities during the rise of a single bubble in a narrow vertical tube are studied using a transient two-dimensional/axisymmetric model. To predict the shape of the bubble deformation, the Navier-Stokes equations in addition to an advection equation for liquid volume fraction are solved. A modified volume-of-fluid technique based on Youngs' algorithm is used to track the bubble deformation. To validate the model, the results of simulations for terminal rise velocity and bubble shape are compared with those of the experiments. The effect of different parameters such as initial bubble radius, channel height, liquid viscosity and surface tension on the shape and rise velocity of the bubble is investigated.  相似文献   

12.
A numerical study has been made of convective heat and mass transfer from a falling film to a laminar gas stream between vertical parallel plates. The effects of gas-liquid phase coupling, variable thermophysical properties, and film vaporization have been considered. Simultaneous mass, momentum and heat transfer between liquid film and gas stream is numerically studied by solving the respective governing equations for the liquid film and gas stream together. The influences of the inlet liquid temperature and liquid flowrate on the cooling of liquid film are examined for air-water and air-ethanol systems. Results show that the heat transfer from the gas-liquid interface to the gas stream is predominantly determined by the latent heat transfer connected with film evaporation. Additionally, better liquid film cooling is noticed for the system having a higher inlet liquid temperature or a lower liquid flowrate.  相似文献   

13.
The effect of an electric field on the buoyancy-driven motion of a two-dimensional gas bubble rising through a quiescent liquid is studied computationally. The dynamics of the bubble is simulated numerically by tracking the gas–liquid interface when an electrostatic field is generated in the vertical gap of the rectangular enclosure. The two phases of the system are assumed to be perfect dielectrics with constant but different permittivities, and in the absence of impressed charges, there is no free charge in the fluid bulk regions or at the interface. Electric stresses are supported at the bubble interface but absent in the bulk and one of the objectives of our computations is to quantify the effect of these Maxwell stresses on the overall bubble dynamics. The numerical algorithm to solve the free-boundary problem relies on the level-set technique coupled with a finite-volume discretization of the Navier–Stokes equations. The sharp interface is numerically approximated by a finite-thickness transition zone over which the material properties vary smoothly, and surface tension and electric field effects are accounted for by employing a continuous surface force approach. A multi-grid solver is applied to the Poisson equation describing the pressure field and the Laplace equation governing the electric field potential. Computational results are presented that address the combined effects of viscosity, surface tension, and electric fields on the dynamics of the bubble motion as a function of the Reynolds number, gravitational Bond number, electric Bond number, density ratio, and viscosity ratio. It is established through extensive computations that the presence of the electric field can have an important effect on the dynamics. We present results that show a substantial increase in the bubble’s rise velocity in the electrified system as compared with the corresponding non-electrified one. In addition, for the electrified system, the bubble shape deformations and oscillations are smaller, and there is a reduction in the propensity of the bubble to break up through increasingly larger oscillations.  相似文献   

14.
This paper describes an analytical model of heat transfer in a two-dimensional, steady, nonreacting particle-containing channel flow. An idealized gas flow of specified uniform velocity between insulated parallel plates is assumed and the nonvaporizing particles are conceptualized as contained within an thin sheet injected at the symmetry plane. Two dimensionless parameters that affect the solution are described. These are the effective gas diffusivityK and the dimensionless particle number densityP. The linear, coupled differential equations governing the energy exchange between the gas and liquid phases are solved by means of the Green's function technique. This procedure yields a Volterra integral-series equation as the solution of the gas-phase energy equation. A series solution of this integral equation is obtained by the method of successive substitutions and terms up to second order are calculated.  相似文献   

15.
This paper presents the findings of a numerical study on the flow boiling in a micro-channel heat sink. The Navier-Stokes equations, energy equation, and the continuity equation are solved in a finite-volume framework using the front-tracking method. The numerical method is validated by comparison with the experimental results for a slug bubble growth, and vertical flow boiling. The numerical method is then used to study the effect of changing the inflow mass-velocity on the heat transfer coefficient, bubble size distribution, and the bubble nucleation frequency for a constant heat flux. The mean heat transfer coefficient of all the cases is found to be nearly twice that of the single-phase heat transfer coefficient. The bubble nucleation frequency is found to increase monotonically with the inflow mass-velocity. The bubble size distribution along the channel is found to become flatter as the mass-velocity is increased. We identify three distinct phases of the bubble evolution, namely the initial rapid growth phase, the boiling dominant phase, and finally the condensation dominant phase. Subsequently, the numerical method is used to study the effect of having a hot-spot near the bubble nucleation site on the heat transfer characteristics. It is found that the bubble nucleation frequency increases and the bubbles’ maximum volume decreases as the intensity of the hot-spot is increased for a fixed inlet flow rate. It is also observed that the average heat transfer coefficient does not change significantly with changing the intensity of the hot-spot, and that the bubble size distribution along the channel becomes flatter as the intensity of the hot-spot is increased.  相似文献   

16.
The dynamics of bubble formation from a submerged nozzle in a highly viscous liquid with relatively fast inflow gas velocity is studied numerically. The numerical simulations are carried out using a sharp interface coupled level set/volume-of-fluid (CLSVOF) method and the governing equations are solved through a hydrodynamic scheme with formal second-order accuracy. Numerical results agree well with experimental results and it is shown that the sharp interface CLSVOF method enables one to reproduce the bubble formation process for a wide range of inflow gas velocities. From numerical results, one can improve their understanding of the mechanisms regarding the dynamics of bubble formation. For example, it is found that for some sets of parameters that the bubble formation process reaches steady state after several bubbles are released from the nozzle. At steady state, bubbles uniformly rise freely in the viscous liquid. It is observed that the fluid flow around a formed bubble has a significant role in determining the overall dynamic process of bubble formation; e.g. the effect of the fluid flow from the preceding bubble can be seen on newly formed bubbles.  相似文献   

17.
In the forthcoming second part of this paper a system of balance laws for a multi-phase mixture with many dispersed bubbles in liquid is derived where phase transition is taken into account. The exchange terms for mass, momentum and energy explicitly depend on evolution laws for total mass, radius and temperature of single bubbles. Therefore in the current paper we consider a single bubble of vapor and inert gas surrounded by the corresponding liquid phase. The creation of bubbles, e.g. by nucleation is not taken into account. We study the behavior of this bubble due to condensation and evaporation at the interface. The aim is to find evolution laws for total mass, radius and temperature of the bubble, which should be as simple as possible but consider all relevant physical effects. Special attention is given to the effects of surface tension and heat production on the bubble dynamics as well as the propagation of acoustic elastic waves by including slight compressibility of the liquid phase. Separately we study the influence of the three phenomena heat conduction, elastic waves and phase transition on the evolution of the bubble. We find ordinary differential equations that describe the bubble dynamics. It turns out that the elastic waves in the liquid are of greatest importance to the dynamics of the bubble radius. The phase transition has a strong influence on the evolution of the temperature, in particular at the interface. Furthermore the phase transition leads to a drastic change of the water content in the bubble. It is shown that a rebounding bubble is only possible, if it contains in addition an inert gas. In Part 2 of the current paper the equations derived are sought in order to close the system of equations for multi-phase mixture balance laws for dispersed bubbles in liquids involving phase change.  相似文献   

18.
The dynamics of a single rising bubble in the vicinity of a vertical wall is explored via three-dimensional numerical simulations. A finite volume method is used to solve the incompressible Navier–Stokes equations. The gas–liquid interface is reconstructed by volume-of-fraction (VOF) method. The trajectory, velocity, shape and vorticity of the bubble are analyzed in detail. The numerical results show that the presence of the wall imposes a repulsion on the bubble and that the bubble migrates away from the wall upon release. The onset of bubble path oscillation is found to occur earlier than for a freely rise counterpart and also at a lower Galilei number. Interestingly, we find that the vertical wall serves as a destabilizing factor in the wall-normal direction but a stabilizing factor in the spanwise direction. The increase of bubble inertia is discovered to enhance the influence of the wall. Furthermore, the bubble oscillations seem insensitive to the variation of the initial bubble-wall distance.  相似文献   

19.
This paper investigates the role of viscoelasticity on the dynamics of rising gas bubbles. The dynamics of bubbles rising in a viscoelastic liquid are characterised by three phenomena: the trailing edge cusp, negative wake, and the rise velocity jump discontinuity. There is much debate in the literature over the cause of the jump discontinuity, which is observed once the bubble exceeds a certain critical volume. In this paper, the employment of some choice modelling assumptions allows insights into the mechanisms of the jump discontinuity which cannot be ascertained experimentally. The ambient fluid is assumed incompressible and the flow irrotational, with viscoelastic effects included through the stress balance on the bubble surface. The governing equations are solved using the boundary element method. Some Newtonian predictions are discussed before investigating the role of viscoelasticity. The model predicts the trademark cusp at the trailing end of a rising bubble to a high resolution. However, the irrotational assumption precludes the prediction of the negative wake. The corresponding absence of the jump discontinuity supports the hypothesis that the negative wake is primarily responsible for the jump discontinuity, as mooted in previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号