首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In phase measurement or digital holography for phase-shifting interferometry, the key role is the variation of reference light wave and recover algorithm based on interferograms and reference phase, so the calculation result is directly affected by phase-shift accuracy. However, because of the errors of nonlinear and other random factors, it is difficult to control the actual phase-shifting amount accurately. In this paper, we aim to propose an efficient method for phase-shifting interferometry which does not require accurate initial estimation of phase-shift amounts, only a few pixels with several randomly shifted interferograms are sufficient for accurate extraction of phase information. This method has reduced the dependence of reference phase, and can obtain phase-shifting amount directly without using complex revised algorithm for correcting phase-shifting nonlinear errors.  相似文献   

2.
优化的两步相移算法在图像加密中的应用研究   总被引:3,自引:0,他引:3       下载免费PDF全文
优化了此前提出的两步相移算法,仅通过两幅去除背景光强(或抑制直流分量)后的干涉图数据和一个(0,π)区间的相移值,就可以成功再现出原始物波场信息,无需借助于物光光强、参考光光强等其他辅助测量信息.与菲涅耳域的双随机相位编码技术结合,该优化算法可以应用于图像加密方案中,通过计算机仿真实验验证了所提方案的可行性,并对几何密钥的灵敏度进行了测试分析.  相似文献   

3.
An iterative algorithm to extract the arbitrary unknown phase shift in two-frame phase-shifting interferometry and then reconstruct the complex object wave is proposed. In combination with the least square principle and some calculation formulae we developed, this algorithm allows us to find the value of unknown phase shift by using only two interferograms without additional knowledge or measurement. Computer simulations have shown that this algorithm works well for both the smooth and diffusing objects to a very high accuracy over a wide range of the phase shift from 0.4 to 2.5 rad.  相似文献   

4.
We report our experimental results of phase-shifting interferometry with an iterative least-squares fitting technique to estimate both the wave front phases and the phase shifts. The method allows phase retrieval from phase-shifting interferograms even though the calibration data of the phase shifter is unknown. The algorithm is used to analyze two sets of experimental interferograms. One records by moving a piezoelectric transducer shifter randomly and therefore has embedded random phase shifter errors, and the other samples the interference movie recorded by a video recorder while driving a stepping motor and therefore has embedded random intensity noises. The results are comparable with that of the conventional M-frame algorithm. Investigation of the effects of the intensity noises and phase shift errors shows the algorithm to perform well in both. Problems such as convergence, unique solution and reliability are also discussed.  相似文献   

5.
The phase shifting method for quantitative fringe pattern analysis provides high accuracy if stringent requirements on the component interferogram recording are met. In the paper the issue of detection and identification of error sources in the two-beam interferogram phase shifting experiment is discussed. The phase shift angle histogram and lattice-site representation are applied for that purpose. Special attention is paid to possible nonlinear recording of component interferograms in the presence of linear and nonlinear phase step errors. Four and five step phase shifting algorithms are considered. The superiority of the lattice-site representation is shown. In the case of phase steps equal to π/2, however, the lattice-site representation of shift angles for five frame algorithm does not allow to detect recording nonlinearity. The four frame counterpart shows to be very helpful in this respect. Its properties related to the fringe pattern profile under study, including a defocused Ronchi grating, are discussed.  相似文献   

6.
A method to reduce the number of captures needed in phase-shifting interferometry is proposed on the basis of grating interferometry and modulation of linear polarization. The case of four interferograms is considered. A common-path interferometer is used with two windows in the object plane and a Ronchi grating as the pupil, thus forming several replicated images of each window over the image plane. The replicated images, under proper matching conditions, superpose in such a way so that they produce interference patterns. Orders 0 and +1 and −1 and 0 form useful patterns to extract the optical phase differences associated to the windows. A phase of π is introduced between these orders using linear polarizing filters placed in the windows and also in the replicated windows, so two π-shifted patterns can be captured in one shot. An unknown translation is then applied to the grating in order to produce another shift in the each pattern. A second and final shot captures these last patterns. The actual grating displacement and the phase shift can be determined according to the method proposed by Kreis before applying proper phase-shifting techniques to finally calculate the phase difference distribution between windows. Related simulations and experimental results are given.  相似文献   

7.
Parallel two-step phase-shifting interferometry for microscopy is presented, and the recording condition for generalized two-step phase-shifting interferometry is discussed. A 45° tilted cube beamsplitter enables to replicate the orthogonally linear polarized object and reference waves into two parallel beams, respectively. As a consequence, two interferograms with quadrature phase shift are obtained along the two beams, and phase reconstructed with an improved algorithm. To reconstruct the phase distribution from the two-step phase-shifting interferograms, a certain recording condition should be satisfied. However, the recording condition has not ever been discussed before. In this paper, the recording condition for the two-step phase-shifting interferometry is derived and that is: the intensity of reference wave should be no less than two times object wave intensity.  相似文献   

8.
In this paper, two families of phase-shifting algorithms with π/2 phase steps are studied. In family I, three new algorithms are derived by using the averaging technique based on the Surrel six-sample algorithm with phase shifts of π/2. Family II includes four well-known algorithms derived by the averaging technique based on the conventional four-sample algorithm with π/2 phase steps. A polynomial model of phase-shift errors used to describe general expressions for calculation of the correct object phase via the Fourier spectra analysing method as a function of the harmonic order in the fringe signal is presented. The error-compensating properties of the algorithms in families I and II are investigated by the Fourier spectra analysing method. It is found that the averaging technique, when used in any of the algorithm with π/2 phase steps, can improve the phase-shifting algorithm property: it is insensitive to phase-shift error when the fringe signal contains the first harmonic, but it can't be used to enhance the phase-shifting algorithm properties when the fringe signal contains higher order harmonics (n2). P–V (peak–valley) phase errors are calculated by the computer simulation and tables and plots are presented, from which the algorithms in families I and II are compared. It is shown that the algorithms in family I are more insensitive to phase-shift errors when the fringe signal contains the second harmonic and the algorithms in family II are more insensitive to phase-shift errors when the fringe signal is a sinusoidal waveform.  相似文献   

9.
将统计理论中的主元分析应用到干涉条纹分析中,提出一种基于主元分析的随机相移算法。该算法先将多帧条纹数据分解成不相关的主元成分,然后从主元成分中提取2维相位信息。数值模拟结果表明:该算法不需要迭代运算就能从4帧完全随机相移干涉图中有效提取相位信息,运算时间少,精度高。实验结果表明主元分析相移算法比现有迭代相移算法更适合于随机相移干涉图分析。  相似文献   

10.

We developed simultaneous phase-shifting system based on a Mach–Zehnder interferometer and a replicating system integrated by a Michelson configuration and a cube beam splitter. The system is capable to obtain four simultaneous interferograms in a single capture, and the phase shifts are controlled by placing a linear polarizer in each replica obtained. The system retrieves four interferograms with a relative phase shift of π/2 and the optical phase map is calculated using the four-step algorithm. In addition, the configuration presents potential capabilities for generating spiral interference patterns. To show the advantage of the technique, experimental results are presented for static and dynamic samples.

  相似文献   

11.
In order to measure the displacements of facets on a growing spherical Cu2−δSe crystal with sub-nanometre resolution, we investigated the reliability and accuracy of standard method of Fourier analysis of digital laser interferograms. Guided by realistic experimental conditions (two-dimensional (2D) interferograms), starting from 2D model interferograms and using original custom designed Gaussian filtering window and multistage unwrapping procedure of the retrieved phase, we demonstrate for a considerable parameter range the non-negligible inherent phase retrieval error due to non-integer number of fringes within the digital image. Our results indicate an intermediate parameter range where the error is acceptably small. We introduce an algorithm modification that significantly reduces the error, especially for low and high fringe densities. In the experimentally most common case of diagonal fringes the reduced error is an order of magnitude smaller than for nearly one-dimensional case within almost entire parameter space.  相似文献   

12.
A high-speed phase-shifted speckle interferometer has been developed recently for studying dynamic events. Speckle interferograms are continuously recorded by a CCD camera operating at 1 kHz with temporal phase shifting carried out by a Pockels cell running at the same frequency. Temporal phase unwrapping through sequences of more than 1000 frames allows the determination of time-varying absolute displacement maps. This paper presents the application of this speckle interferometry system to the detection and measurement of sub-surface delamination defects in carbon fibre specimens. The influence of re-referencing the temporal phase unwrapping algorithm after different time intervals is analysed to reduce the random phase errors produced by speckle decorrelation and vibration. The performance of several phase-shifting algorithms to minimize the influence of the vibration noise caused by the vacuum pump used to load the specimen is also investigated.  相似文献   

13.
In phase-shifting interferometry, based on the difference image between interferograms with unknown phase-shifting amount, a rapid phase extraction method is proposed. In this method, first, by means of the simple subtraction operation between interferograms captured in one phase-shifting period, a sequence of difference images are generated easily; second, to decrease the random phase-shifting errors induced during the phase-shifting procedure, the summation operation is performed for these difference images; third, based on one time phase recovery operation and one time phase-unwrapping operation, the measured phase with high precision can be obtained rapidly. Moreover, in the proposed method, by means of a simple phase summation operation for all pixel-phases in one interferogram, the corresponding phase-shifting amount of interferogram can be determined conveniently.  相似文献   

14.
Urgent needs for high-speed, non-contact and on-line measurement with high accuracy and repeatability are of great interest for automatic optical inspection (AOI) industries. Therefore, optical phase-shifting interferometry for precision 3-D surface profilometry has become an important metrological method due to its non-contact and high measurement accuracy. Traditional phase-shifting interferometry is very sensitive to vibrations because image acquisition in various phase-shifting sequences could easily introduce measurement errors from environmental influences, such as air disturbance and system structure vibrations. In this paper, we introduce a new simultaneous phase-shifting interferometer for 3-D surface profilometry which employs a single glass plate to generate simultaneous phase-shifted interferograms. Phase reconstruction is performed by using a developed phase-shifting algorithm which uses a three-step phase-shifting method with phase differences of 90°, 180°, and 270° for three interferograms. To verify measurement accuracy and repeatability, the system was employed to measure surface profiles of surface of a flat mirror and set of Mitutoyo gauge blocks. The experiment result shows that the method is proven to be capable of performing one-shot interferometric measurement and minimizing influences from environmental disturbances with measurement repeatability down to 10 nm or less.  相似文献   

15.
Wang Z  Han B 《Optics letters》2004,29(14):1671-1673
An advanced random phase-shifting algorithm to extract phase distributions from randomly phase-shifted interferograms is proposed. The algorithm is based on a least-squares iterative procedure, but it copes with the limitation of the existing iterative algorithms by separating a frame-to-frame iteration from a pixel-to-pixel iteration. The algorithm provides stable convergence and accurate phase extraction with as few as three interferograms, even when the phase shifts are completely random. The algorithm is simple, fast, and fully automatic. A computer simulation is conducted to prove the concept.  相似文献   

16.
Yu Zhang 《中国物理 B》2022,31(3):30601-030601
An accurate and fast three-step self-calibrating generalized phase-shifting interferomertry (SGPSI) is proposed. In this approach, two new phase-shifting signals are constructed by the difference interferograms normalization and noise suppressing, then the unknown phase shift between the two difference phase-shifting signals is estimated quickly through searching the minimum coefficient of variation of the modulation amplitude, a limited number of pixels are selected to participate in the search process to further save time, and finally the phase is reconstructed through the searched phase shift. Through the reconstruction of phase map by the simulation and experiment, and the comparison with several mature algorithms, the good performance of the proposed algorithm is proved, and it eliminates the limitation of requiring more than three phase-shifting interferograms for high-precision SGPSI. We expect this method to be widely used in the future.  相似文献   

17.
This paper presents a whole-field method for automatic determination of the isoclinic parameter φ in photoelasticity. The method determines φ in the true phase interval (-π/2<φ+π/2) based on the four-step color phase-shifting approach and a new unwrapping method based on simple logic operations, a binary image and a gray-scale mask. A plane polariscope with a white light source is used for capturing raw photoelastic fringe images. The theoretical validation of the method is done with the problem of a circular disk under compression. Comparisons between theoretical and experimental results are also demonstrated. The experimental confirmation for the proposed method is tested with the photoelastic model having an isotropic point(s) and/or a singular point(s). The results show the method permits the reliable isoclinic parameter to be determined in the true phase interval with almost no defects of the isochromatic parameter.  相似文献   

18.
A real-time system for analysing data from speckle interferometers, and speckle shearing interferometers, has been developed. Interferograms are continuously recorded by a digital camera at a rate of 60 frames s−1 with temporal phase shifting carried out at the same rate. The images are analysed using a pipeline image processor. With a standard 4-frame phase-shifting algorithm (phase steps of π/2), wrapped phase maps are calculated and displayed at 15 frames s−1. These are unwrapped using a temporal phase unwrapping algorithm to provide a real-time colour-coded display of the relevant displacement component. Each camera pixel (or cluster of pixels) behaves in effect as an independent displacement sensor. The reference speckle interferogram is updated automatically at regular user-defined intervals, allowing arbitrarily large deformations to be measured and errors due to speckle decorrelation to be minimised. The system has been applied to the problem of detecting sub-surface delamination cracks in carbon fibre composite panels.  相似文献   

19.
王永伟  艾华  卓仁善  曹艳波 《中国光学》2014,7(6):1012-1018
采用一种空间移相干涉仪测量凹形非球面反射镜光学表面,使用偏振元件和多幅图像同步采集实现移相,并对测量得到的干涉条纹采用基于离散余弦变换的相位解包裹算法,对不连续相位分布采用非加权的最小二乘法进行优化目标函数,最终重构出被测光学表面的面形.这种结构形式的干涉仪具有一定的抗振能力,同时在数字图像处理上优化了算法,能够快速稳定地得到被测面形,而且对硬件要求不高.结果表明:这种算法能够适用于非实验室条件下的光学测量,在一定干扰条件下可以达到较高的测量精度.  相似文献   

20.
Phase modulation of presently used phase-shifting interferometers is assumed to be spatially uniform across the observing aperture. However, calibration errors or the configuration of an interferometer can cause a spatial nonuniformity in the phase modulation. Spatial nonuniformity causes a significant error in the measured phase when the phase modulator has nonlinear sensitivity. An even-order nonlinearity in the phase modulation in particular contributes to the errors. Lowest-order errors can be suppressed by adding a new symmetry to the sampling functions of the phase-shifting algorithm, however the algorithm suffers from large random noise. The random noise is shown to be decreased substantially by applying one more sampled frame to the algorithm. We derive new seven-sample and eight-sample algorithms that can compensate for a nonuniform phase shift and has much less random noise than the previous algorithm we proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号