首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Zn(II) sorption onto Al and Si oxides was studied as a function of pH (5.1-7.52), sorption density, and ionic strength. This study was carried out to determine the role of the various reaction conditions and sorbent phases in Zn complexation at oxide surfaces. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to probe the Zn atomic environment at the metal oxide/aqueous interface. For both amorphous silica and high-surface-area gibbsite, Zn sorption kinetics were rapid and reached completion within 24 h. In contrast, Zn sorption on low-surface-area-gibbsite was much slower, taking nearly 800 h for a sorption plateau to be reached. In the case of silica, EXAFS revealed that Zn was in octahedral coordination with first-shell oxygen atoms up to a surface loading of approximately 1 micro molm(-2), changing to tetrahedral coordination as surface loading and pH increased. For the high-surface-area gibbsite system, the Znz.sbnd;O first-shell distance was intermediate between values for tetrahedral and octahedral coordination over all loading levels. Zn formed inner-sphere adsorption complexes on both silica and high-surface-area gibbsite over all reaction conditions. For Zn sorption on low-surface-area gibbsite, formation of Znz.sbnd;Al layered double hydroxide (LDH) occurred and was the cause for the observed slow Zn sorption kinetics. The highest pH sample (7.51) in the Zn-amorphous silica system resulted in the formation of an amorphous Zn(OH)(2) precipitate with tetrahedral coordination between Zn and O. Aging the reaction samples did not alter the Zn complex in any of the systems. The results of this study indicate the variability of Zn complexation at surfaces prevalent in soil and aquatic systems and the importance of combining macroscopic observations with methods capable of determining metal complex formation mechanisms.  相似文献   

2.
A new electrodeposition condition to produce Zn-Al LDH films was developed using nitrate solutions containing Zn (2+) and Al (3+) ions. Deposition was achieved by reducing nitrate ions to generate hydroxide ions on the working electrode. This elevates the local pH on the working electrode, resulting in precipitation of Zn-Al LDH films. The effect of deposition potential, pH of the plating solution, and the Zn (2+) to Al (3+) ratio in the plating solution on the purity and crystallinity of the LDH films deposited was systematically studied using X-ray diffraction and energy dispersive spectroscopy (EDS). The optimum deposition potential to deposit pure and well-ordered Zn-Al LDH films was E = -1.65V versus a Ag/AgCl in 4 M KCl reference electrode at room temperature using a solution containing 12.5 mM Zn(NO 3) 2.6H 2O and 7.5 mM Al(NO 3) 3.9H 2O with pH adjusted to 3.8. The resulting film contained 39 atomic %Al (3+) ions replacing Zn (2+) ions, leading to a composition of Zn 0.61Al 0.39(OH) 2(NO 3) 0.39. xH 2O. Increasing or decreasing the aluminum concentration in the plating solution resulted in the formation of aluminum- or zinc-containing impurities, respectively, instead of varying aluminum content incorporated into the LDH phase. Choosing an optimum deposition potential was important to obtain LDH as a pure phase in the film. When the potential more negative than the optimum potential is used, zinc metal or zinc hydroxide was deposited as a side product, whereas making the potential less negative than the optimum potential resulted in the formation of zinc oxide as the major phase. The pH condition of the plating solution was also critical, as increasing pH destabilizes the formation of the LDH phase while decreasing pH promoted deposition of other impurities.  相似文献   

3.
The influence of humic acid (HA) on Ni(ii) sorption to Ca-montmorillonite was examined by using a combination of batch sorption experiments and extended X-ray absorption fine structure (EXAFS) spectroscopy technique. The sorption of Ni(ii) on HA-montmorillonite hybrids is strongly dependent on pH and temperature. At low pH, the sorption of Ni(ii) is mainly dominated by Ni-HA-montmorillonite and outer-sphere surface complexation. The EXAFS results indicate that the first coordination shell of Ni(ii) consists of ~6 O atoms at the interatomic distances of ~2.04 ? in an octahedral structure. At high pH, binary Ni-montmorillonite surface complexation is the dominant sorption mechanism. EXAFS analysis indicates the formation of mononuclear complexes located at the edges of Ca-montmorillonite platelets at pH 7.5, while a Ni-Al layered double hydroxide (LDH) phase at the Ca-montmorillonite surface formed with pH 8.5. At pH 10.0, the dissolved HA-Ni(ii) complexation inhibits the precipitation of Ni hydroxide, and Ni-Al LDH phase forms. The rise of temperature increases the sorption capacity of Ni(ii), and promotes Ni-Al LDH phase formation and the growth of crystallites. The results are important to evaluate the physicochemical behavior of Ni(ii) in the natural environment.  相似文献   

4.
This study investigates Cu and Zn removal onto binary mixed mineral sorbents from simulated wastewater, relevant to streams impacted by acid mine drainage and effluents. Mixed suspensions of kaolinite/montmorillonite and kaolinite/goethite exhibited different sorption behavior from the single mineral components, reducing Cu and Zn removal (except Cu sorbed on montmorillonite/goethite) over the range of pH investigated. Cu and Zn removal by the electrolyzed systems showed a complex response to increased ionic strength, which increased solid concentration, leading to lower Cu and Zn sorption. Enhanced Cu sorption on the montmorillonite/goethite as age increased may be attributed to increased hydroxylation of the mineral surface resulting in the formation of new reactive sites.  相似文献   

5.
This study investigates the reactivity and removal kinetics of Cu and Zn onto mixed mineral systems from aqueous solution related to acid mine drainage impacted areas. The sorbents used were kaolinite, Al-montmorillonite, goethite, and their mixtures. The effects of surface charge, proton coefficient, and sorption kinetics were studied at room temperature (23+/-2 degrees C). Using an empirical model, mineral mixing reduced the exchange of protons for sorbing ions and the acidity of the reactive sites, thus impeding Cu and Zn removal by proton exchange. Based on the amount of Cu and Zn sorbed on the mixed mineral suspensions at ionic strength 0.01 to 0.1 M and pH 4, it is suggested that Cu and Zn removal from aqueous solution was by both inner and outer sphere complexation. Mineral mixing reduced the transfer rate of Cu relative to the single mineral suspensions in both slow and fast reaction phases. The behavior of the mixed suspensions in Cu and Zn sorption suggest that different reactive sites were involved at the onset of sorption, becoming similar to those of the single mineral components over time.  相似文献   

6.
Spectroscopic and microscopic studies have shown that Ni and Co sorption by clay minerals may proceed via formation of surface precipitates. Several studies employing X-ray absorption fine structure (XAFS) spectroscopy suggested the formation of turbostratic, alpha-type metal hydroxides, of layered double hydroxides (LDH) with Al-for-metal substitution, and of 1:1 or 2:1 phyllosilicates. Distinction of these phases is difficult because they have low crystallinity and/or a small mass compared to the sorbents, and because they have similar metal-metal distances in their hydroxide layers/sheets. Distinction of these phases is crucial, however, because they have substantially differing solubilities. In this paper we show that an XAFS beat pattern at about 8 ?(-1) can be used as a fingerprint to unequivocally distinguish LDH from the alpha-type hydroxides and phyllosilicates. Full multiple-scattering simulations and experimental spectra of model compounds indicate that the beat pattern is due to focused multiple scattering at Me/Al ratios between 1 and 4 (Me=Ni, Co). By applying the fingerprint method to new and to already published XAFS data on Ni and Co surface precipitates, we found that LDH preferentially forms in the presence of the Al-containing sorbents pyrophyllite, illite, kaolinite, gibbsite, and alumina above pH 7.0. However, alpha-type metal hydroxides form in the presence of the Al-free sorbents talc, silica, and rutile, and in the presence of the Al-containing clay minerals montmorillonite and vermiculite. We believe that the high permanent charge of these latter minerals prevents or retards the release of Al. When Al is available, the formation of LDH seems to be thermodynamically and/or kinetically favored over the formation of alpha-type hydroxides. Copyright 2000 Academic Press.  相似文献   

7.
The products of aqueous Zn(II) sorption on high-surface-area alumina powders (Linde-A) have been studied using XAFS spectroscopy as a function of Zn(II) sorption density (Gamma=0.2 to 3.3 μmol/m(2)) at pH values of 7.0 to 8.2. Over equilibration times of 15-111 h, we find that at low sorption densities (Gamma=0.2-1.1 μmol/m(2)) Zn(II) forms predominantly inner-sphere bidentate surface complexes with AlO(6) polyhedra, whereas at higher sorption densities (Gamma=1.5 to 3.5 μmol/m(2)), we find evidence for the formation of a mixed-metal Zn(II)-Al(III) hydroxide coprecipitate with a hydrotalcite-type local structure. These conclusions are based on an analysis of first- and second-neighbor interatomic distances derived from EXAFS spectra collected under ambient conditions on wet samples. At low sorption densities the sorption mechanism involves a transformation from six-coordinated Zn-hexaaquo solution complexes (with an average Zn-O distance of 2.07 ?) to four-coordinated surface complexes (with an average Zn-O distance of 1.97 ?) as described by the reaction identical withAl(OH(a))(OH(b))+Zn (H(2)O)(6)(2+)--> identical withAl(OH(a)') (OH(b)')Zn(OH(c)')(OH(d)'+4H(2)O+zH(+), where identical withAl(OH(a))(OH(b)) represents edge-sharing sites of Al(O,OH,OH(2))(6) octahedra to which Zn(O,OH,OH(2))(4) bonds in a bidentate fashion. The proton release consistent with this reaction (z=a-a'+b-b'+4-c'-d'), and with bond valence analysis falls in the range of 0 to 2 H(+)/Zn(II) when hydrolysis of the adsorbed Zn(II) complex is neglected. This interpretation suggests that proton release is likely a strong function of the coordination chemistry of the surface hydroxyl groups. At higher sorption densities (1.5 to 3.5 μmol/m(2)), a high-amplitude, second-shell feature in the Fourier transform of the EXAFS spectra indicates the formation of a three-dimensional mixed-metal coprecipitate, with a hydrotalcite-like local structure. Nitrate anions presumably satisfy the positive layer charge of the Al(III)-Zn(II) hydroxide layers in which the Zn/Al ratio falls in the range of 1 : 1 to 2 : 1. Our results for the higher Gamma-value sorption samples suggest that Zn-hydrotalcite-like phases may be a significant sink for Zn(II) in natural or catalytic systems containing soluble alumina compounds. Copyright 2000 Academic Press.  相似文献   

8.
There have been a number of studies that have examined metal precipitation reactions on an array of natural soil materials. While many of these investigations have focused on model single-component systems, recent research has appeared on metal precipitation on soils and clay fractions of soils. However, few studies have explored mixed model component systems, which may lead to a better understanding of metal reactions on soils and clay fractions. Furthermore, only a few studies have appeared on the stability of the metal surface precipitates. In light of this, we investigated Ni sorption and dissolution kinetics and mechanisms on a mixture of gibbsite and amorphous silica by combining macroscopic studies with X-ray absorption fine structure (XAFS) and diffuse reflectance spectroscopies (DRS), and high-resolution thermogravimetric analysis (HRTGA). Batch sorption experiments were conducted at pH 7.5 and at different reaction times to elucidate the sorption process and to study the role of residence time on metal precipitate stability. Spectroscopic and HRTGA investigations revealed alpha-Ni(OH)(2) precipitates formed on the gibbsite/silica mixture initially and over time evolved to a Ni phyllosilicate. The available Si source was derived from partial dissolution of the sorbent during Ni sorption. With increasing residence time, the precipitate phases drastically increased in stability, as shown by decreasing amounts of Ni release as effected by nitric acid (HNO(3)) and ethylenediaminetetraacetic acid (EDTA) treatments. This aging effect may be explained by the silicate-for-nitrate exchange during the first days of reaction and subsequently by silicate polymerization and partial grafting onto the hydroxide layers to form a phyllosilicate precursor phase (R. G. Ford, A. C. Scheinost, K. G. Scheckel, and D. L. Sparks, Environ. Sci. Technol. 33(18), 3140-3144, 1999). Copyright 2000 Academic Press.  相似文献   

9.
To better understand the application of kaolinite as an adsorbent for the decontamination of Ni(II) from radionuclide contaminated aqueous systems, herein, the sorption behavior of radionuclide 63Ni(II) on kaolinite as a function of contacting time, pH, coexistent electrolyte ions, adsorbent concentration, fulvic acid and humic acid was investigated using batch technique. At low pH values, ion exchange and/or outer-sphere surface complexation was the main mechanism of Ni(II) sorption on kaolinite, whereas, the sorption of Ni(II) was dominated by inner-sphere surface complexation at high pH values. The presence of different electrolyte ions can enhance or inhibit the sorption of Ni(II) on kaolinite to some extent. The Langmuir and Freundlich models were used to simulate the sorption isotherms of Ni(II) at three different temperatures of 288, 313 and 338 K. The thermodynamic parameters (i.e., ΔS°, ΔH°, and ΔG°) calculated from the temperature-dependent sorption isotherms indicated that the sorption reaction of Ni(II) on kaolinite was endothermic and spontaneous. The findings in this present study demonstrates that the kaolinite can be used as a cost-effective adsorbent for the solidification and pre-concentration of Ni(II) from large volumes of aqueous systems.  相似文献   

10.
Sorption of the endocrine disrupting chemicals (EDCs) bisphenol A (BPA), 17alpha-ethynylestradiol (EE2) and estrone (E1) from 3 microM aqueous solutions in 10 mM KNO3 to goethite, kaolinite and montmorillonite was investigated at 25 degrees C. Uptake of the EDCs by goethite and kaolinite suspensions was <20%, and little affected by pH. Sorption by montmorillonite was greater, ranging from 20 to 60%, and steadily increased from about pH 7. The amount of EDC sorbed to the mineral phases generally increased in the order of decreasing solubility (BPA相似文献   

11.
Optimum conditions have been found for the synthesis of peroxide-containing supramolecular structures through the reactions of Zn-Al layered double hydroxide (LDH) and its modified analogues with hydrogen peroxide solutions. The supramolecular structures based on Zn-Al LDH are stable and contain 15% active oxygen (31.8% H2O2). A peroxide formation mechanism is suggested.  相似文献   

12.
ZnO/Zn-Al layered double hydroxide (ZnO/Zn-Al LDH) hierarchical architecture, a new type of ZnO-based heterostructure, has been synthesized directly on an Al substrate via a facile solution phase process. The firecracker-like heterostructures consist of uniform ZnO nanorods orderly standing at the edges of two-dimensional (2D) surfaces of Zn-Al LDH nanoplatelets. Experimental result obtained from the early growth stage indicates that the underlying Zn-Al LDH nanoplatelet arrays are well constructed with their (00l) planes perpendicular to the surface of Al substrate. We propose that the "edge effect" of Zn-Al LDH and the "lattice match" between ZnO and Zn-Al LDH are vital to the growth of such heterostructures. The effects of total solution volume and NH3.H2O concentration on the formation of heterostructures are investigated. It is found that other LDH-based complex structures can also be achieved controllably by varying the mentioned experimental factors. Our work is the first demonstration of fabricating intricate ZnO/Zn-Al LDH heterostructures as well as well-defined Zn-Al LDH arrays on an Al substrate, for which several promising applications such as optoelectronics, biosensors, and catalysis can be envisioned.  相似文献   

13.
Ion, precipitate and adsorbing colloid flotations of zinc(II) from dilute aqueous solutions have been investigated over a wide pH range using the anionic surfactant Aerosol OT or the cationic collector cetyl pyridinium chloride. In case of adsorbing colloid flotation (ACF) iron oxyhydroxide and aluminium hydroxide were used, either separately or together, as coprecipitants. The precipitate flotation curves were compared with the corresponding theoretical one calculated from the data published for Zn(II) hydrolysis. In addition to the effect of pH on the percent removal the effects of collector concentration, ionic strength, bubbling time and metal ion concentration were investigated and the optimum conditions were established. High removals could be achieved especially with ACF. The results obtained are discussed with respect to the chemical state of zinc, the ionization behaviour of the collectors and properties of the coprecipitants. The developed ACF process was applied to the removal of65Zn from radioactive process wastewater.  相似文献   

14.
The effect of benzene carboxylic acids on the adsorption of Cd(II) (5×10−5 M) by goethite and kaolinite has been studied in 0.005 M NaNO3 at 25°C. The concentrations of phthalic (benzene-1,2-dicarboxylic acid), hemimellitic (1,2,3), trimellitic (1,2,4), trimesic (1,3,5), pyromellitic (1,2,4,5) and mellitic (1,2,3,4,5,6) acids varied from 2.5×10−5 to 1×10−3 M. Mellitic acid complexes Cd(II) strongly above about pH 3, but the other acids only at higher pH, phthalic acid forming the weakest complexes. Phthalic, trimesic and mellitic acids adsorbed strongly to goethite at pH 3, but adsorption decreased at higher pH; however, mellitic acid was still about 50% adsorbed at pH 9, by which the other two were almost entirely in solution. At 10−3 M all the acids enhanced the adsorption of Cd(II) to goethite, the higher members of the series being the most effective. The higher members of the series suppressed Cd(II) adsorption onto kaolinite, but phthalic and trimesic acids caused slight enhancement. The effects of mellitic acid on Cd(II) adsorption depended strongly on its concentration. The maximum enhancement of Cd(II) adsorption onto goethite was at 10−4 M. The greatest suppression of Cd(II) adsorption onto kaolinite was at 10−3 M, and at 2.5×10−5 M mellitic acid enhanced Cd(II) adsorption onto kaolinite at intermediate pH. The results are interpreted in terms of complexation between metal and ligand (acid), metal and substrate, ligand and substrate, and the formation of ternary surface complexes in which the ligand acts as a bridge between the metal and the surface.  相似文献   

15.
The hydrotalcite-like layered double hydroxide (LDH) of Mg with Al shows dramatic changes in the peaks arising from the (h0l)/(0kl) family of reflections in its powder X-ray diffraction pattern during thermal treatment. DIFFaX simulations show that these changes arise due to the transformation of the disordered 3R1 polytype into the 1H polytype on dehydration. The 1H polytype is an essential precursor to the decomposition reaction, which results in the formation of an oxide residue with the rock salt structure. In contrast, the LDH of Zn with Al does not undergo any such transformation, retaining the structure of the 3R1 polytype until decomposition into the oxide residue. Given the poor octahedral site preference of the Zn2+ ion, the 1H polytype is neither structurally stable nor is it topochemically necessary for the thermal decomposition of the Zn-Al LDH, the end product of the decomposition reaction being an oxide with the wurtzite structure.  相似文献   

16.
Sorption of phosphate onto gibbsite (gamma-Al(OH)3) and kaolinite has been studied by both macroscopic and 31P solid-state NMR measurements. Together these measurements indicate that phosphate is sorbed by a combination of surface complexation and surface precipitation with the relative amounts of these phases depending on pH and phosphate concentration. At low pH and high phosphate concentrations sorption is dominated by the presence of both amorphous and crystalline precipitate phases. The similarity between the single-pulse and CP/MAS NMR spectra suggests that the precipitate phases form a thin layer on the surface of the particles in close contact with protons from surface hydroxyl groups or coordinated water molecules. While the crystalline phase is only evident on samples below pH 7, amorphous AlPO4 was found at all pH and phosphate concentrations studied. As pH was increased the fraction of phosphate sorbed as an inner-sphere complex increased, becoming the dominant surface species by pH 8. Comparison of sorption and NMR results suggests that the inner-sphere complexes form by monodentate coordination to singly coordinated Al-OH sites on the edges of the gibbsite and kaolinite crystals. Outer-sphere phosphate complexes, which are readily desorbed, are also present at high pH.  相似文献   

17.
18.
The intercalation of water-soluble p-sulfonated calix[4 and 6]arene (CS4 and CS6) in the interlayer of the Mg-Al and Zn-Al layered double hydroxide (LDH) by the coprecipitation method has been investigated, as well as the adsorption properties of the resulting CS/LDHs for benzyl alcohol (BA) and p-nitrophenol (NP) to prepare new microporous organic-inorganic hybrid adsorbents. The amount and arrangement of CS intercalated was different by the kind of the host metal ions. CS4 cavity axis was perpendicular for the Mg-Al LDH basal layer and parallel for the Zn-Al LDH basal layer, while CS6 cavity axis was perpendicular for both the LDH basal layers. In the BET surface area measurement, the surface area of the Zn-Al/CS4/LDH was four times than that of the Mg-Al/CS4/LDH, expecting that the former has higher adsorption capacity than the latter. In fact, the adsorption ability of the CS/LDHs for BA and NP in aqueous solution was found to be larger in the Zn-Al/CS4/LDH than in the Mg-Al/CS4/LDH. In addition, the adsorption ability of both the LDHs was larger in the CS6/LDHs than in the CS4/LDHs. These results were explained by the difference in the amount and arrangement of CS intercalated in the LDH interlayer space.  相似文献   

19.
张树芹  侯万国 《中国化学》2007,25(10):1455-1460
Layered double hydroxide (LDH) with a Mg/Al molar ratio of 1 : 1 was synthesized by using a co-precipitation method and its calcined product (CLDH) was obtained by calcination of the MgAl-LDH at 500 ℃. The sorption removal of Pb^2+ from solution was investigated, finding that both LDH and CLDH show good sorption ability and they could be used as a new type of environmental sorbent for the removal of Pb^2+ from water. The sorption kinetics and the sorption isotherms of Pb^2+ on both LDH and CLDH can be described by the pseudo-second order kinetics and Freundlich isotherm, respectively, under the studied conditions. The sorption amounts of Pb^2+ on LDH and CLDH are independent of pH in a pH range of about 3-10. The presence of NaNO3 may inhibit the sorption of Pb^2+ on LDH while hardly affect that on CLDH. The sorption mechanism of Pb^2+ on LDH and CLDH may be attributed to the surface precipitation and the surface complex adsorption. The surface complex adsorption may be further distinguished to the chemical binding adsorption forming the inner-sphere surface complexes and the electrostatic binding adsorption forming the outer-sphere surface complexes. The sorption mechanism of Pb^2+ on LDH may be attributed to the surface precipitation and the electrostatic binding adsorption, while that on CLDH may be attributed to the surface precipitation and the chemical binding adsorption.  相似文献   

20.
The adsorption equilibrium, kinetics, and thermodynamics of removal of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solutions by a calcined Zn-Al layered double hydroxide incorporated with Zr(4+) were studied with respect to time, temperature, pH, and initial 2,4-D concentration. Zr(4+) incorporation into the LDH was used to enhance 2,4-D uptake by creating higher positive charges and surface/layer modification of the adsorbent. The LDH was capable of removing up to 98% of 2,4-D from 5 to 400 ppm aqueous at adsorbent dosages of 500 and 5000 mg L(-1). The adsorption was described by a Langmuir-type isotherm. The percentage 2,4-D removed was directly proportional to the adsorbent dosage and was optimized with 8% Zr(4+) ion content, relative to the total metals (Zr(4+)+Al(3+)+Zn(2+)). Selected mass transfer and kinetic models were applied to the experimental data to examine uptake mechanism. The boundary layer and intra-particle diffusion played important roles in the adsorption mechanisms of 2,4-D, and the kinetics followed a pseudo-second order kinetic model with an enthalpy, ΔH(ads) of -27.7±0.9 kJ mol(-1). Regeneration studies showed a 6% reduction in 2,4-D uptake capacity over six adsorption-desorption cycles when exposed to an analyte concentration of 100 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号